Skip to main content

Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

White matter fiber clustering (WMFC) enables parcellation of white matter tractography for applications such as disease classification and anatomical tract segmentation. However, the lack of ground truth and the ambiguity of fiber data (the points along a fiber can equivalently be represented in forward or reverse order) pose challenges to this task. We propose a novel WMFC framework based on unsupervised deep learning. We solve the unsupervised clustering problem as a self-supervised learning task. Specifically, we use a convolutional neural network to learn embeddings of input fibers, using pairwise fiber distances as pseudo annotations. This enables WMFC that is insensitive to fiber point ordering. In addition, anatomical coherence of fiber clusters is improved by incorporating brain anatomical segmentation data. The proposed framework enables outlier removal in a natural way by rejecting fibers with low cluster assignment probability. We train and evaluate our method using 200 datasets from the Human Connectome Project. Results demonstrate superior performance and efficiency of the proposed approach.

We acknowledge funding provided by the following National Institutes of Health (NIH) grants: R01MH125860, R01MH119222, R01MH074794, and P41EB015902.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Article  Google Scholar 

  2. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Mag. Res. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  3. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  4. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546 (2005)

    Google Scholar 

  5. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV, pp. 1422–1430 (2015)

    Google Scholar 

  6. Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)

    Article  Google Scholar 

  7. Garyfallidis, E., Brett, M., Correia, M.M., et al.: QuickBundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  8. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv:1803.07728 (2018)

  9. Griffa, A., Baumann, P.S., Thiran, J.P., Hagmann, P.: Structural connectomics in brain diseases. Neuroimage 80, 515–526 (2013)

    Article  Google Scholar 

  10. Guevara, P., et al.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61(4), 1083–1099 (2012)

    Article  MathSciNet  Google Scholar 

  11. Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: ICNIP, pp. 373–382 (2017). https://doi.org/10.1007/978-3-319-70096-0_39

  12. Gupta, V., Thomopoulos, S.I., Rashid, F.M., Thompson, P.M.: FiberNET: an ensemble deep learning framework for clustering white matter fibers. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 548–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_63

    Chapter  Google Scholar 

  13. Huerta, I., et al.: Inter-subject clustering of brain fibers from whole-brain tractography. In: EMBC, pp. 1687–1691. IEEE (2020)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  15. Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: CVPR, pp. 1920–1929 (2019)

    Google Scholar 

  16. Legarreta, J.H., et al.: Tractography filtering using autoencoders. arXiv:2010.04007 (2020)

  17. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  18. Maier-Hein, K.H., Neher, P.F., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)

    Article  Google Scholar 

  19. Malcolm, J.G., Shenton, M.E., Rathi, Y.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29(9), 1664–1675 (2010)

    Article  Google Scholar 

  20. Norton, I., Essayed, W.I., Zhang, F., Pujol, S., Yarmarkovich, A., et al.: SlicerDMRI: open source diffusion MRI software for brain cancer research. Cancer Res. 77(21), e101–e103 (2017)

    Article  Google Scholar 

  21. O’Donnell, L., Westin, C.-F.: White matter tract clustering and correspondence in populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 140–147. Springer, Heidelberg (2005). https://doi.org/10.1007/11566465_18

    Chapter  Google Scholar 

  22. O’Donnell, L.J., Golby, A.J., Westin, C.F.: Fiber clustering versus the parcellation-based connectome. NeuroImage 80, 283–289 (2013)

    Article  Google Scholar 

  23. O’Donnell, L.J., et al.: Automated white matter fiber tract identification in patients with brain tumors. NeuroImage: Clin. 13, 138–153 (2017)

    Article  Google Scholar 

  24. O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_16

    Chapter  Google Scholar 

  25. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)

  26. Paszke, A., Gross, S., Massa, F., Lerer, A., et al.: PyTorch: an imperative style, high-performance deep learning library. arXiv:1912.01703 (2019)

  27. Siless, V., Chang, K., Fischl, B., Yendiki, A.: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity. NeuroImage 166, 32–45 (2018)

    Article  Google Scholar 

  28. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for graph clustering. In: AAAI, vol. 28 (2014)

    Google Scholar 

  29. Tunç, B., et al.: Individualized map of white matter pathways: connectivity-based paradigm for neurosurgical planning. Neurosurgery 79(4), 568–577 (2016)

    Article  Google Scholar 

  30. Van Essen, D.C., Smith, S.M., Barch, D.M., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  31. Vázquez, A., et al.: FFClust: fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. NeuroImage 220, 117070 (2020)

    Article  Google Scholar 

  32. Wasserthal, J., Neher, P., Maier-Hein, K.H.: Tractseg-fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 (2018)

    Article  Google Scholar 

  33. Wu, Y., Hong, Y., Ahmad, S., Lin, W., Shen, D., Yap, P.-T.: Tract dictionary learning for fast and robust recognition of fiber bundles. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 251–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_25

    Chapter  Google Scholar 

  34. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, pp. 478–487. PMLR (2016)

    Google Scholar 

  35. Xu, C., Sun, G., Liang, R., Xu, X.: Vector field streamline clustering framework for brain fiber tract segmentation. arXiv preprint arXiv:2011.01795 (2020)

  36. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  37. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: CVPR, pp. 5147–5156 (2016)

    Google Scholar 

  38. Yeh, F.C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178, 57–68 (2018)

    Article  Google Scholar 

  39. Yoo, S.W., et al.: An example-based multi-atlas approach to automatic labeling of white matter tracts. PLoS ONE 10(7), e0133337 (2015)

    Article  Google Scholar 

  40. Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)

    Article  Google Scholar 

  41. Zhang, F., et al.: SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin. Cancer Inform. 4, 299–309 (2020)

    Article  Google Scholar 

  42. Zhang, F., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. NeuroImage 172, 826–837 (2018)

    Article  Google Scholar 

  43. Zhang, F., et al.: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage 179, 429–447 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Y. et al. (2021). Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics