Abstract
White matter fiber clustering (WMFC) enables parcellation of white matter tractography for applications such as disease classification and anatomical tract segmentation. However, the lack of ground truth and the ambiguity of fiber data (the points along a fiber can equivalently be represented in forward or reverse order) pose challenges to this task. We propose a novel WMFC framework based on unsupervised deep learning. We solve the unsupervised clustering problem as a self-supervised learning task. Specifically, we use a convolutional neural network to learn embeddings of input fibers, using pairwise fiber distances as pseudo annotations. This enables WMFC that is insensitive to fiber point ordering. In addition, anatomical coherence of fiber clusters is improved by incorporating brain anatomical segmentation data. The proposed framework enables outlier removal in a natural way by rejecting fibers with low cluster assignment probability. We train and evaluate our method using 200 datasets from the Human Connectome Project. Results demonstrate superior performance and efficiency of the proposed approach.
We acknowledge funding provided by the following National Institutes of Health (NIH) grants: R01MH125860, R01MH119222, R01MH074794, and P41EB015902.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)
Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., Aldroubi, A.: In vivo fiber tractography using DT-MRI data. Mag. Res. Med. 44(4), 625–632 (2000)
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9
Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546 (2005)
Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV, pp. 1422–1430 (2015)
Fischl, B.: Freesurfer. Neuroimage 62(2), 774–781 (2012)
Garyfallidis, E., Brett, M., Correia, M.M., et al.: QuickBundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv:1803.07728 (2018)
Griffa, A., Baumann, P.S., Thiran, J.P., Hagmann, P.: Structural connectomics in brain diseases. Neuroimage 80, 515–526 (2013)
Guevara, P., et al.: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas. Neuroimage 61(4), 1083–1099 (2012)
Guo, X., Liu, X., Zhu, E., Yin, J.: Deep clustering with convolutional autoencoders. In: ICNIP, pp. 373–382 (2017). https://doi.org/10.1007/978-3-319-70096-0_39
Gupta, V., Thomopoulos, S.I., Rashid, F.M., Thompson, P.M.: FiberNET: an ensemble deep learning framework for clustering white matter fibers. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 548–555. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_63
Huerta, I., et al.: Inter-subject clustering of brain fibers from whole-brain tractography. In: EMBC, pp. 1687–1691. IEEE (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)
Kolesnikov, A., Zhai, X., Beyer, L.: Revisiting self-supervised visual representation learning. In: CVPR, pp. 1920–1929 (2019)
Legarreta, J.H., et al.: Tractography filtering using autoencoders. arXiv:2010.04007 (2020)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11) (2008)
Maier-Hein, K.H., Neher, P.F., et al.: The challenge of mapping the human connectome based on diffusion tractography. Nat. Commun. 8(1), 1–13 (2017)
Malcolm, J.G., Shenton, M.E., Rathi, Y.: Filtered multitensor tractography. IEEE Trans. Med. Imaging 29(9), 1664–1675 (2010)
Norton, I., Essayed, W.I., Zhang, F., Pujol, S., Yarmarkovich, A., et al.: SlicerDMRI: open source diffusion MRI software for brain cancer research. Cancer Res. 77(21), e101–e103 (2017)
O’Donnell, L., Westin, C.-F.: White matter tract clustering and correspondence in populations. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 140–147. Springer, Heidelberg (2005). https://doi.org/10.1007/11566465_18
O’Donnell, L.J., Golby, A.J., Westin, C.F.: Fiber clustering versus the parcellation-based connectome. NeuroImage 80, 283–289 (2013)
O’Donnell, L.J., et al.: Automated white matter fiber tract identification in patients with brain tumors. NeuroImage: Clin. 13, 138–153 (2017)
O’Donnell, L.J., Wells, W.M., Golby, A.J., Westin, C.-F.: Unbiased groupwise registration of white matter tractography. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7512, pp. 123–130. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_16
Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv:1807.03748 (2018)
Paszke, A., Gross, S., Massa, F., Lerer, A., et al.: PyTorch: an imperative style, high-performance deep learning library. arXiv:1912.01703 (2019)
Siless, V., Chang, K., Fischl, B., Yendiki, A.: AnatomiCuts: hierarchical clustering of tractography streamlines based on anatomical similarity. NeuroImage 166, 32–45 (2018)
Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for graph clustering. In: AAAI, vol. 28 (2014)
Tunç, B., et al.: Individualized map of white matter pathways: connectivity-based paradigm for neurosurgical planning. Neurosurgery 79(4), 568–577 (2016)
Van Essen, D.C., Smith, S.M., Barch, D.M., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)
Vázquez, A., et al.: FFClust: fast fiber clustering for large tractography datasets for a detailed study of brain connectivity. NeuroImage 220, 117070 (2020)
Wasserthal, J., Neher, P., Maier-Hein, K.H.: Tractseg-fast and accurate white matter tract segmentation. NeuroImage 183, 239–253 (2018)
Wu, Y., Hong, Y., Ahmad, S., Lin, W., Shen, D., Yap, P.-T.: Tract dictionary learning for fast and robust recognition of fiber bundles. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 251–259. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_25
Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, pp. 478–487. PMLR (2016)
Xu, C., Sun, G., Liang, R., Xu, X.: Vector field streamline clustering framework for brain fiber tract segmentation. arXiv preprint arXiv:2011.01795 (2020)
Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Ann. Data Sci. 2(2), 165–193 (2015)
Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: CVPR, pp. 5147–5156 (2016)
Yeh, F.C., et al.: Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178, 57–68 (2018)
Yoo, S.W., et al.: An example-based multi-atlas approach to automatic labeling of white matter tracts. PLoS ONE 10(7), e0133337 (2015)
Zhang, F., Karayumak, S.C., Hoffmann, N., Rathi, Y., Golby, A.J., O’Donnell, L.J.: Deep white matter analysis (DeepWMA): fast and consistent tractography segmentation. Med. Image Anal. 65, 101761 (2020)
Zhang, F., et al.: SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin. Cancer Inform. 4, 299–309 (2020)
Zhang, F., et al.: Whole brain white matter connectivity analysis using machine learning: an application to autism. NeuroImage 172, 826–837 (2018)
Zhang, F., et al.: An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. NeuroImage 179, 429–447 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chen, Y. et al. (2021). Deep Fiber Clustering: Anatomically Informed Unsupervised Deep Learning for Fast and Effective White Matter Parcellation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_47
Download citation
DOI: https://doi.org/10.1007/978-3-030-87234-2_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87233-5
Online ISBN: 978-3-030-87234-2
eBook Packages: Computer ScienceComputer Science (R0)