Skip to main content

Surface-Guided Image Fusion for Preserving Cortical Details in Human Brain Templates

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12907))

Abstract

Human brain templates are a basis for comparison of brain features across individuals. They should ideally capture anatomical details at both coarse and fine scales to facilitate comparison at varying granularity. Brain template construction typically involves spatial normalization and image fusion. While significant efforts have been dedicated to improving brain templates with sophisticated spatial normalization algorithms, image fusion is typically carried out using intensity-based averaging, causing blurring of anatomical structures. Here, we present an image fusion method that exploits cortical surfaces as guidance to help preserve details in brain templates. Our method encodes cortical boundary information given by a cortical surface mesh in a signed distance function (SDF) map. We use the SDF map to help determine localized contributions of the individual images, especially at cortical boundaries, in image fusion. Experimental results demonstrate that our method significantly improves the preservation of fine gyral and sulcal details, resulting in detailed brain templates with good surface-volume agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An image closest in appearance to all other images.

  2. 2.

    https://www.humanconnectome.org/software/connectome-workbench.

References

  1. Ahmad, S., et al.: Surface-constrained volumetric registration for the early developing brain. Med. Image Anal. 58, 101540 (2019). https://doi.org/10.1016/j.media.2019.101540

  2. Andescavage, N., et al.: In vivo textural and morphometric analysis of placental development in healthy and growth-restricted pregnancies using magnetic resonance imaging. Pediatr. Res. 85, 974–981 (2019). https://doi.org/10.1038/s41390-019-0311-1

    Article  Google Scholar 

  3. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. NeuroImage 49(3), 2457–2466 (2010). https://doi.org/10.1016/j.neuroimage.2009.09.062

    Article  Google Scholar 

  4. De, K., Masilamani, V.: Image sharpness measure for blurred images in frequency domain. Procedia Eng. 64, 149–158 (2013). https://doi.org/10.1016/j.proeng.2013.09.086

    Article  Google Scholar 

  5. Evans, A.C., et al.: Brain templates and atlases. Neuroimage 62(2), 911–922 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.024

  6. Fischl, B.: Freesurfer. NeuroImage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  7. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013). https://doi.org/10.1016/j.neuroimage.2013.04.127

    Article  Google Scholar 

  8. He, C., et al.: Structure-function connectomics reveals aberrant developmental trajectory occurring at preadolescence in the autistic brain. Cereb. Cortex 30(9), 5028–5037 (2020). https://doi.org/10.1093/cercor/bhaa098

    Article  Google Scholar 

  9. Herting, M.M., et al.: Development of subcortical volumes across adolescence in males and females: a multisample study of longitudinal changes. NeuroImage 172, 194–205 (2018). https://doi.org/10.1016/j.neuroimage.2018.01.020

    Article  Google Scholar 

  10. Jenkinson, M., et al.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17(2), 825–841 (2002). https://doi.org/10.1006/nimg.2002.1132

  11. Jenkinson, M., et al.: FSL. NeuroImage 62(2), 782–790 (2012). https://doi.org/10.1016/j.neuroimage.2011.09.015

  12. Kuklisova-Murgasova, M., et al.: A dynamic 4D probabilistic atlas of the developing brain. NeuroImage 54(4), 2750–2763 (2011). https://doi.org/10.1016/j.neuroimage.2010.10.019

    Article  Google Scholar 

  13. Luo, Y., et al.: Intensity and sulci landmark combined brain atlas construction for Chinese pediatric population. Hum. Brain Mapp. 35(8), 3880–3892 (2014). https://doi.org/10.1002/hbm.22444

    Article  Google Scholar 

  14. Makropoulos, A., et al.: Regional growth and atlasing of the developing human brain. NeuroImage 125, 456–478 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.047

    Article  Google Scholar 

  15. Pomponio, R., et al.: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 208, 116450 (2020). https://doi.org/10.1016/j.neuroimage.2019.116450

  16. Ridwan, A.R., et al.: Development and evaluation of a high performance T1-weighted brain template for use in studies on older adults. Hum. Brain Mapp., 1–19 (2021). https://doi.org/10.1002/hbm.25327

  17. Schuh, A., et al.: Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. bioRxiv (2018). https://doi.org/10.1101/251512

  18. Serag, A., et al.: A multi-channel 4D probabilistic atlas of the developing brain: application to fetuses and neonates. Spec. Issue Ann. Br. Mach. Vis. Assoc. (2011)

    Google Scholar 

  19. Valk, S.L., et al.: Shaping brain structure: genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci. Adv. 6(39) (2020). https://doi.org/10.1126/sciadv.abb3417

  20. Van Essen, D.: The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012). https://doi.org/10.1016/j.neuroimage.2012.02.018

    Article  Google Scholar 

  21. Zhang, Y., et al.: Detail-preserving construction of neonatal brain atlases in space-frequency domain. Hum. Brain Mapp. 37(6), 2133–2150 (2016). https://doi.org/10.1002/hbm.23160

Download references

Acknowledgments

This work was supported in part by the United States National Institutes of Health (NIH) grants EB008374 and EB006733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmad, S., Wu, Y., Yap, PT. (2021). Surface-Guided Image Fusion for Preserving Cortical Details in Human Brain Templates. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12907. Springer, Cham. https://doi.org/10.1007/978-3-030-87234-2_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87234-2_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87233-5

  • Online ISBN: 978-3-030-87234-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics