Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. arXiv preprint arXiv:2005.00928 (2020)
Brinker, T.J., et al.: Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur. J. Cancer 113, 47–54 (2019)
CrossRef
Google Scholar
Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)
CrossRef
Google Scholar
Gachon, J., et al.: First prospective study of the recognition process of melanoma in dermatological practice. Arch. Dermatol. 141(4), 434–438 (2005)
CrossRef
Google Scholar
Ge, Z., Demyanov, S., Chakravorty, R., Bowling, A., Garnavi, R.: Skin disease recognition using deep saliency features and multimodal learning of dermoscopy and clinical images. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 250–258. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_29
CrossRef
Google Scholar
Grob, J., Bonerandi, J.: The ‘ugly duckling’ sign: identification of the common characteristics of nevi in an individual as a basis for melanoma screening. Arch. Dermatol. 134(1), 103–104 (1998)
CrossRef
Google Scholar
Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)
Google Scholar
Schadendorf, D., et al.: Melanoma. The Lancet 392(10151), 971–984 (2018)
CrossRef
Google Scholar
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30, pp. 6000–6010 (2017)
Google Scholar
Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A.: Automated melanoma recognition in dermoscopy images via very deep residual networks. IEEE Trans. Med. Imaging 36(4), 994–1004 (2016)
CrossRef
Google Scholar
Yu, Z., et al.: Melanoma recognition in dermoscopy images via aggregated deep convolutional features. IEEE Trans. Biomed. Eng. 66(4), 1006–1016 (2018)
CrossRef
Google Scholar
Yuan, T., Deng, W., Tang, J., Tang, Y., Chen, B.: Signal-to-noise ratio: a robust distance metric for deep metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4815–4824 (2019)
Google Scholar