Skip to main content

Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

Computed tomography (CT) reconstruction from X-ray projections acquired within a limited angle range is challenging, especially when the angle range is extremely small. Both analytical and iterative models need more projections for effective modeling. Deep learning methods have gained prevalence due to their excellent reconstruction performances, but such success is mainly limited within the same dataset and does not generalize across datasets with different distributions. Hereby we propose ExtraPolationNetwork for limited-angle CT reconstruction via the introduction of a sinogram extrapolation module, which is theoretically justified. The module complements extra sinogram information and boots model generalizability. Extensive experimental results show that our reconstruction model achieves state-of-the-art performance on NIH-AAPM dataset, similar to existing approaches. More importantly, we show that using such a sinogram extrapolation module significantly improves the generalization capability of the model on unseen datasets (e.g., COVID-19 and LIDC datasets) when compared to existing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, J., Öktem, O.: Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 37(6), 1322–1332 (2018)

    Article  Google Scholar 

  2. Chen, H., et al.: Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans. Med. Imaging 36(12), 2524–2535 (2017)

    Article  Google Scholar 

  3. Cheng, W., Wang, Y., Li, H., Duan, Y.: Learned full-sampling reconstruction from incomplete data. IEEE Trans. Comput. Imag. 6, 945–957 (2020)

    Article  MathSciNet  Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  5. Ding, Q., Chen, G., Zhang, X., Huang, Q., Ji, H., Gao, H.: Low-dose CT with deep learning regularization via proximal forward backward splitting. Phys. Med. Biol. 65, 125009 (2020)

    Google Scholar 

  6. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  7. Gupta, H., Jin, K.H., Nguyen, H.Q., McCann, M.T., Unser, M.: CNN-based projected gradient descent for consistent CT image reconstruction. IEEE Trans. Med. Imaging 37(6), 1440–1453 (2018)

    Article  Google Scholar 

  8. Jin, K.H., McCann, M.T., Froustey, E., Unser, M.: Deep convolutional neural network for inverse problems in imaging. IEEE Trans. Image Process. 26(9), 4509–4522 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  10. Lin, W.A., et al.: DuDoNet: dual domain network for CT metal artifact reduction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10512–10521 (2019)

    Google Scholar 

  11. Lyu, Y., Lin, W.-A., Liao, H., Lu, J., Zhou, S.K.: Encoding metal mask projection for metal artifact reduction in computed tomography. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 147–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_15

    Chapter  Google Scholar 

  12. Mahmood, F., Shahid, N., Skoglund, U., Vandergheynst, P.: Adaptive graph-based total variation for tomographic reconstructions. IEEE Signal Process. Lett. 25(5), 700–704 (2018)

    Article  Google Scholar 

  13. Mardani, M., et al.: Neural proximal gradient descent for compressive imaging. arXiv preprint arXiv:1806.03963 (2018)

  14. McCollough, C.: TU-FG-207A-04: overview of the low dose CT grand challenge. Med. Phys. 43(6Part35), 3759–3760 (2016)

    Google Scholar 

  15. Rantala, M., et al.: Wavelet-based reconstruction for limited-angle x-ray tomography. IEEE Trans. Med. Imaging 25(2), 210–217 (2006)

    Article  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Schafer, S., et al.: Mobile C-arm cone-beam CT for guidance of spine surgery: image quality, radiation dose, and integration with interventional guidance. Med. Phys. 38(8), 4563–4574 (2011)

    Article  Google Scholar 

  18. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Article  Google Scholar 

  19. Solomon, O., et al.: Deep unfolded robust PCA with application to clutter suppression in ultrasound. IEEE Trans. Med. Imaging 39(4), 1051–1063 (2019)

    Article  Google Scholar 

  20. Wang, G., Zhang, Y., Ye, X., Mou, X.: Machine Learning for Tomographic Imaging. IOP Publishing, Bristol (2019)

    Google Scholar 

  21. Wang, T., Nakamoto, K., Zhang, H., Liu, H.: Reweighted anisotropic total variation minimization for limited-angle CT reconstruction. IEEE Trans. Nucl. Sci. 64(10), 2742–2760 (2017)

    Article  Google Scholar 

  22. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  24. Yang, Q., et al.: Low-dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 37(6), 1348–1357 (2018)

    Article  Google Scholar 

  25. Yang, Y., Sun, J., Li, H., Xu, Z.: Deep ADMM-Net for compressive sensing MRI. Adv. Neural. Inf. Process. Syst. 29, 10–18 (2016)

    Google Scholar 

  26. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 521–538 (2018)

    Article  Google Scholar 

  27. Zeng, D., et al.: Spectral CT image restoration via an average image-induced nonlocal means filter. IEEE Trans. Biomed. Eng. 63(5), 1044–1057 (2015)

    Article  Google Scholar 

  28. Zhang, H.M., Dong, B.: A review on deep learning in medical image reconstruction. J. Oper. Res. Soc. China, 1–30 (2020)

    Google Scholar 

  29. Zhang, H., Dong, B., Liu, B.: JSR-Net: a deep network for joint spatial-radon domain CT reconstruction from incomplete data. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3657–3661. IEEE (2019)

    Google Scholar 

  30. Zhang, H., Liu, B., Yu, H., Dong, B.: MetaInv-Net: meta inversion network for sparse view CT image reconstruction. IEEE Trans. Med. Imaging 40(2), 621–634 (2021)

    Article  Google Scholar 

  31. Zhang, Y., et al.: LEARN++: recurrent dual-domain reconstruction network for compressed sensing CT. arXiv preprint arXiv:2012.06983 (2020)

  32. Zhou, S.K., et al.: A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. In: Proceedings of the IEEE (2021)

    Google Scholar 

  33. Zhou, S.K., Rueckert, D., Fichtinger, G.: Handbook of Medical Image Computing and Computer Assisted Intervention. Academic Press, San Diego (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 11831002, in part by the Beijing Natural Science Foundation under Grant 180001, in part by the NSFC under Grant 12090022, and in part by the Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C. et al. (2021). Improving Generalizability in Limited-Angle CT Reconstruction with Sinogram Extrapolation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics