Skip to main content

Deep Open Snake Tracker for Vessel Tracing

  • 5810 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12906)


Vessel tracing by modeling vascular structures in 3D medical images with centerlines and radii can provide useful information for vascular health. Existing algorithms have been developed but there are certain persistent problems such as incomplete or inaccurate vessel tracing, especially in complicated vascular beds like the intracranial arteries. We propose here a deep learning based open curve active contour model (DOST) to trace vessels in 3D images. Initial curves were proposed from a centerline segmentation neural network. Then data-driven machine knowledge was used to predict the stretching direction and vessel radius of the initial curve, while the active contour model (as human knowledge) maintained smoothness and intensity fitness of curves. Finally, considering the non-loop topology of most vasculatures, individually traced vessels were connected into a tree topology by applying a minimum spanning tree algorithm on a global connection graph. We evaluated DOST on a Time-of-Flight (TOF) MRA intracranial artery dataset and demonstrated its superior performance over existing segmentation-based and tracking-based vessel tracing methods. In addition, DOST showed strong adaptability on different imaging modalities (CTA, MR T1 SPACE) and vascular beds (coronary arteries).


  • Vascular tracing
  • Active contour model
  • Snake
  • Artery modeling
  • Vascular tree
  • Vessel tracker

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87231-1_56
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-87231-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Callaway, C.W., Carson, A.P., Chamberlain, A.M., et al.: Heart disease and stroke statistics—2020 uspdate a report from the American heart association (2020).

  2. Hameeteman, K., Zuluaga, M.A., Freiman, M., et al.: Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med. Image Anal. 15(4), 477–488 (2011).

    CrossRef  Google Scholar 

  3. Han, K., Chen, L., Geleri, D.B., Mossa-basha, M., Hatsukami, T., Yuan, C.: Deep-learning based significant stenosis detection from multiplanar reformatted Images of traced Intracranial arteries. In: American Society of Neuroradiology 58th Annual Meeting (2020).

  4. Chen, Z., Chen, L., Shirakawa, M., et al.: Intracranial vascular feature changes in time of flight MR angiography in patients undergoing carotid revascularization surgery. Magn. Reson. Imaging 75(August 2020), 45–50 (2021).

  5. Liu, W., et al.: Uncontrolled hypertension associates with subclinical cerebrovascular health globally: a multimodal imaging study. Eur. Radiol. 31(4), 2233–2241 (2020).

    CrossRef  Google Scholar 

  6. Chen, L., Sun, J., Hippe, D.S., et al.: Quantitative assessment of the intracranial vasculature in an older adult population using iCafe (intracranial artery feature extraction). Neurobiol. Aging 79, 59–65 (2019).

    CrossRef  Google Scholar 

  7. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009).

    CrossRef  Google Scholar 

  8. Bibiloni, P., Massanet, S.: A survey on curvilinear object segmentation in multiple applications. Pattern Recognit. 60, 949–970 (2016).

    CrossRef  Google Scholar 

  9. Zhao, F., Chen, Y., Hou, Y., He, X.: Segmentation of blood vessels using rule-based and machine-learning-based methods: a review. Multimedia Syst. 25(2), 109–118 (2017).

    CrossRef  Google Scholar 

  10. Chen, L., Xie, Y., Sun, J., et al.: 3D intracranial artery segmentation using a convolutional autoencoder. In: 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 3D. IEEE (2017).

  11. Wang, Y., Wei, X., Liu, F., Chen, J., Zhou, Y., Shen, W.: Deep distance transform for tubular structure segmentation in CT scans, 3833–3842 (2020)

    Google Scholar 

  12. Wang, Y., Narayanaswamy, A., Tsai, C.L., Roysam, B.: A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics 9(2–3), 193–217 (2011).

    CrossRef  Google Scholar 

  13. Wolterink, J.M., Hamersvelt, R.W., Viergever, M.A., Leiner, T., Išgum, I.: Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier. Med. Image Anal. 51, 46–60 (2019).

  14. Yang, H., Chen, J., Chi, Y., Xie, X., Hua, X.: Discriminative coronary artery tracking via 3D CNN in cardiac CT angiography. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 468–476. Springer, Cham (2019).

    CrossRef  Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988).

    CrossRef  MATH  Google Scholar 

  16. Wang, Y., Narayanaswamy, A., Roysam, B.: Novel 4-D open-curve active contour and curve completion approach for automated tree structure extraction. In: Proceedings of IEEE Computer and Social Conference on Computer and Vision Pattern Recognition, pp. 1105–1112 (Published online 2011).

  17. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020).

    CrossRef  Google Scholar 

  18. Chen, L., Dager, S.R., Shaw, D.W.W., et al.: A novel algorithm for refining cerebral vascular measurements in infants and adults. J. Neurosci. Methods. 340(April), 108751 (2020).

    CrossRef  Google Scholar 

  19. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27(3), 236–239 (1984).

    CrossRef  Google Scholar 

  20. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7(1), 48 (1956).

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Liu, W., Chen, Z., Ortega, D., et al.: Arterial elasticity, endothelial function and intracranial vascular health: a multimodal MRI study. J. Cereb. Blood Flow Metab. 0271678X2095695 (Published online 20 October 2020).

  22. Schaap, M., Metz, C.T., van Walsum, T., et al.: Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med. Image Anal. 13(5), 701–714 (2009).

    CrossRef  Google Scholar 

  23. Chen, L., Mossa-Basha, M., Balu, N., et al.: Development of a quantitative intracranial vascular features extraction tool on 3D MRA using semiautomated open-curve active contour vessel tracing. Magn. Reson. Med. 79(6), 3229–3238 (2018).

    CrossRef  Google Scholar 

  24. Chen, L., Mossa-Basha, M., Sun, J., et al.: Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): a reproducibility study. Magn Reson Imaging. 2019(57), 293–302 (2018).

    CrossRef  Google Scholar 

  25. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J. Image Video Process. 2008(1), 1 (2008).

    CrossRef  Google Scholar 

  26. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998).,

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    CrossRef  Google Scholar 

  28. Chen, L., Hatsukami, T., Hwang, J.-N., Yuan, C.: Automated intracranial artery labeling using a graph neural network and hierarchical refinement. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 76–85. Springer, Cham (2020).

    CrossRef  Google Scholar 

  29. Chen, L., Sun, J., Canton, G., et al.: Automated artery localization and vessel wall segmentation using tracklet refinement and polar conversion. IEEE Access. 8, 1 (2020).

    CrossRef  Google Scholar 

  30. Chen, L., Geleri, D.B., Sun, J., et al.: Multi-planar, multi-contrast and multi-timepoint analysis tool (MOCHA ) for intracranial vessel wall imaging review. In: Proceedings of the Annual Meeting of the International Society for Magnetic Resonance in Medicine, 2020 (2020).

Download references


This work was supported by National Institute of Health under grant R01-NS092207. We are grateful for the collaborators who provided the datasets for this study, including the BRAVE investigators, Harborview Medical Center, and the public data from Erasmus MC, Rotterdam. We gratefully acknowledge the support of NVIDIA Corporation for donating the Titan GPU.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Li Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 575 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Chen, L. et al. (2021). Deep Open Snake Tracker for Vessel Tracing. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)