Skip to main content

AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-center LGE MRIs

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12906))

Abstract

Left atrial (LA) segmentation from late gadolinium enhanced magnetic resonance imaging (LGE MRI) is a crucial step needed for planning the treatment of atrial fibrillation. However, automatic LA segmentation from LGE MRI is still challenging, due to the poor image quality, high variability in LA shapes, and unclear LA boundary. Though deep learning-based methods can provide promising LA segmentation results, they often generalize poorly to unseen domains, such as data from different scanners and/or sites. In this work, we collect 140 LGE MRIs from different centers with different levels of image quality. To evaluate the domain generalization ability of models on the LA segmentation task, we employ four commonly used semantic segmentation networks for the LA segmentation from multi-center LGE MRIs. Besides, we investigate three domain generalization strategies, i.e., histogram matching, mutual information based disentangled representation, and random style transfer, where a simple histogram matching is proved to be most effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, C., et al.: Improving the generalizability of convolutional neural network-based segmentation on CMR images. Front. Cardiovasc. Med. 7, 105 (2020)

    Article  Google Scholar 

  2. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3640–3649 (2016)

    Google Scholar 

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Dou, Q., de Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalization via model-agnostic learning of semantic features. In: Advances in Neural Information Processing Systems, pp. 6450–6461 (2019)

    Google Scholar 

  5. Higuchi, K., et al.: The spatial distribution of late gadolinium enhancement of left atrial magnetic resonance imaging in patients with atrial fibrillation. JACC: Clin. Electrophysiol. 4(1), 49–58 (2018)

    Google Scholar 

  6. Karim, R., et al.: Evaluation of current algorithms for segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium: an open-access grand challenge. J. Cardiovasc. Magn. Reson. 15(1), 1–17 (2013). Article number: 105

    Article  MathSciNet  Google Scholar 

  7. Li, L., Weng, X., Schnabel, J.A., Zhuang, X.: Joint left atrial segmentation and scar quantification based on a DNN with spatial encoding and shape attention. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 118–127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_12

    Chapter  Google Scholar 

  8. Li, L., et al.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)

    Article  Google Scholar 

  9. Li, L., et al.: Random style transfer based domain generalization networks integrating shape and spatial information. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 208–218. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_21

    Chapter  Google Scholar 

  10. Ma, J.: Histogram matching augmentation for domain adaptation with application to multi-centre, multi-vendor and multi-disease cardiac image segmentation. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 177–186. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_18

    Chapter  Google Scholar 

  11. Meng, Q., et al.: Mutual information-based disentangled neural networks for classifying unseen categories in different domains: application to fetal ultrasound imaging. IEEE Trans. Med. Imaging 40(2), 722–734 (2020)

    Article  MathSciNet  Google Scholar 

  12. Njoku, A., et al.: Left atrial volume predicts atrial fibrillation recurrence after radiofrequency ablation: a meta-analysis. Ep Europace 20(1), 33–42 (2018)

    Article  Google Scholar 

  13. Rhode, K., Karim, R.: ISBI 2012: left atrium fibrosis and scar segmentation challenge (2012). http://www.cardiacatlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2020)

    Article  Google Scholar 

  16. Yakubovskiy, P.: Segmentation models (2019). https://github.com/qubvel/segmentation_models

  17. Zhao, J., Xiong, Z.: MICCAI 2018: Atrial segmentation challenge (2018). http://atriaseg2018.cardiacatlas.org/

  18. Zhou, K., Yang, Y., Hospedales, T., Xiang, T.: Learning to generate novel domains for domain generalization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 561–578. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_33

    Chapter  Google Scholar 

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  20. Zhu, L., Gao, Y., Yezzi, A., Tannenbaum, A.: Automatic segmentation of the left atrium from MR images via variational region growing with a moments-based shape prior. IEEE Trans. Image Process. 22(12), 5111–5122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was funded by the National Natural Science Foundation of China (grant no. 61971142, 62111530195 and 62011540404) and the development fund for Shanghai talents (no. 2020015). L. Li was partially supported by the CSC Scholarship. JA Schnabel and VA Zimmer would like to acknowledge funding from a Wellcome Trust IEH Award (WT 102431), an EPSRC programme grant (EP/P001009/1), and the Wellcome/EPSRC Center for Medical Engineering (WT 203148/Z/16/Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiahai Zhuang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 113 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X. (2021). AtrialGeneral: Domain Generalization for Left Atrial Segmentation of Multi-center LGE MRIs. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics