Skip to main content

Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

In magnetic resonance imaging (MRI), noise is a limiting factor for higher spatial resolution and a major cause of prolonged scan time, owing to the need for repeated scans. Improving the signal-to-noise ratio is therefore key to faster and higher-resolution MRI. Here we propose a method for mapping and reducing noise in MRI by leveraging the inherent redundancy in complex-valued multi-channel MRI data. Our method leverages a provably optimal strategy for shrinking the singular values of a data matrix, allowing it to outperform state-of-the-art methods such as Marchenko-Pastur PCA in noise reduction. Our method reduces the noise floor in brain diffusion MRI by 5-fold and remarkably improves the contrast of spiral lung \(^{19}\)F MRI. Our framework is fast and does not require training and hyper-parameter tuning, therefore providing a convenient means for improving SNR in MRI.

This work was supported in part by United States National Institutes of Health (NIH) grants MH125479 and EB006733.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veraart, J., Fieremans, E., Novikov, D.S.: Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 76(5), 1582–1593 (2016)

    Article  Google Scholar 

  2. Chang, W.T., Huynh, K.M., Yap, P.T., Lin, W.: Navigator-free submillimeter diffusion imaging using multishot-encoded simultaneous multi-slice (MUSIUM). arXiv preprint arXiv:2012.00664 (2020)

  3. Budinger, T.F., et al.: Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. Magn. Reson. Mater. Phys. Biol. Med. 29(3), 617–639 (2016)

    Article  Google Scholar 

  4. Fan, Q., et al.: MGH-USC human connectome project datasets with ultra-high B-value diffusion MRI. Neuroimage 124, 1108–1114 (2016)

    Article  Google Scholar 

  5. Kraff, O., Quick, H.H.: 7T: physics, safety, and potential clinical applications. J. Magn. Reson. Imaging 46(6), 1573–1589 (2017)

    Article  Google Scholar 

  6. Ocali, O., Atalar, E.: Ultimate intrinsic signal-to-noise ratio in MRI. Magn. Reson. Med. 39(3), 462–473 (1998)

    Article  Google Scholar 

  7. Haldar, J.P., Liu, Y., Liao, C., Fan, Q., Setsompop, K.: Fast submillimeter diffusion MRI using gSlider-SMS and SNR-enhancing joint reconstruction. Magn. Reson. Med. 84(2), 762–776 (2020)

    Article  Google Scholar 

  8. Marchenko, V.A., Pastur, L.A.: Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik 114(4), 507–536 (1967)

    MATH  Google Scholar 

  9. Ma, X., Uğurbil, K., Wu, X.: Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation. NeuroImage 116852 (2020)

    Google Scholar 

  10. Gavish, M., Donoho, D.L.: Optimal shrinkage of singular values. IEEE Trans. Inf. Theory 63(4), 2137–2152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lemberskiy, G., Baete, S., Veraart, J., Shepherd, T.M., Fieremans, E., Novikov, D.S.: Achieving sub-MM clinical diffusion MRI resolution by removing noise during reconstruction using random matrix theory. In: Proceedings of the ISMRM 27th Annual Meeting, vol. 27 (2019)

    Google Scholar 

  12. Lemberskiy, G., Baete, S., Veraart, J., Shepherd, T.M., Fieremans, E., Novikov, D.S.: MRI below the noise floor. In: Proceedings of the ISMRM 28th Annual Meeting, vol. 28 (2020)

    Google Scholar 

  13. Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., Hajnal, J.V.: Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage 200, 391–404 (2019)

    Article  Google Scholar 

  14. Daducci, A., Van De Ville, D., Thiran, J.P., Wiaux, Y.: Sparse regularization for fiber ODF reconstruction: from the suboptimality of \(l_2\) and \(l_1\) priors to \(l_0\). Med. Image Anal. 18(6), 820–833 (2014)

    Article  Google Scholar 

  15. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  16. Eichner, C., et al.: Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast. Neuroimage 122, 373–384 (2015)

    Article  Google Scholar 

  17. Pizzolato, M., Gilbert, G., Thiran, J.P., Descoteaux, M., Deriche, R.: Adaptive phase correction of diffusion-weighted images. NeuroImage 206, 116274 (2020)

    Google Scholar 

  18. Pizzolato, M., Fick, R., Boutelier, T., Deriche, R.: Noise floor removal via phase correction of complex diffusion-weighted images: influence on DTI and q-space metrics. In: Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., Reisert, M. (eds.) MICCAI 2016. MV, pp. 21–34. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54130-3_2

    Chapter  Google Scholar 

  19. Dietrich, O., Raya, J.G., Reeder, S.B., Ingrisch, M., Reiser, M.F., Schoenberg, S.O.: Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn. Reson. Imaging 26(6), 754–762 (2008)

    Article  Google Scholar 

  20. Caruyer, E., Daducci, A., Descoteaux, M., Houde, J.C., Thiran, J.P., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: ISMRM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huynh, K.M., Chang, WT., Chung, S.H., Chen, Y., Lee, Y., Yap, PT. (2021). Noise Mapping and Removal in Complex-Valued Multi-Channel MRI via Optimal Shrinkage of Singular Values. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12906. Springer, Cham. https://doi.org/10.1007/978-3-030-87231-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87231-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87230-4

  • Online ISBN: 978-3-030-87231-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics