Skip to main content

Fluorescent Probes for Monitoring Oxidation of Lipids and Assessment of Antioxidant Activity

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Knowledge of the kinetics and mechanism of peroxidation and antioxidant action gained from model systems (solvents, micelles, liposomes) is fundamental for the exploration of processes mediated by Reactive Oxygen Species (ROS) in the cells and organisms. The research concerning ROS-related biological functions and harmful effects continuously requires new sensitive and specific tools for fast and reliable monitoring of inhibited and non-inhibited oxidation and tools to enable a deeper insight into the molecular basis of ROS-related diseases. Fluorescent probes (FP) are promising sensors of ROS due to their high sensitivity, simplicity in data collection, and high spatial resolution in imaging techniques. This chapter provides a brief description of the development of FPs applied for sensing selected radical and non-radical ROS (superoxide O2•−, hydroxyl radical HO, lipid peroxyl radicals LOO, hydrogen peroxide H2O2, and alkyl hydroperoxides ROOH). The achievements in the design of FPs have elevated the methodology of research from simple fluorimetric titrations to the methods approaching the sensitivity on the level of single molecules observed in individual liposomes or living cells and also to new techniques for monitoring the rate of oxidation and determination of the kinetic parameters with precision comparable to conventional, non-fluorescent methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad MH, Sahar A, Hitzmann B (2017) Fluorescence spectroscopy for the monitoring of food processes. In: Hitzmann B (ed) Measurement, modeling and automation in advanced food processing. Springer International Publishing, Berlin, pp 121–151. https://doi.org/10.1007/978-3-319-60111-3

    Chapter  Google Scholar 

  • Akasaka K, Ohrui H (2000) Development of phosphine reagents for the high-performance liquid chromatographic-fluorometric determination of lipid hydroperoxides. J Chromatogr A 881(1–2):159–170

    CAS  PubMed  Google Scholar 

  • Akasaka K, Suzuki T, Ohrui H, Meguro H (1987) Study on aromatic phosphines for novel fluorometry of hydroperoxides (ii) -the determination of lipid hydroperoxides with diphenyl-1-pyrenylphosphine. Anal Lett 20(5):797–807

    CAS  Google Scholar 

  • Atik S, Singer LA (1978) Fluorescence quenching by nitroxyl radicals in micellar environments. A useful probe for studying micelle-substrate interactions. J Am Chem Soc 100(10):3234–3235

    CAS  Google Scholar 

  • Banwell CN, EM MC (1994) Fundamentals of molecular spectroscopy. McGraw-Hill, London

    Google Scholar 

  • Barja G (2002) The quantitative measurement of H2O2 generation in isolated mitochondria. J Bioenerg Biomembr 34(3):227–233

    CAS  PubMed  Google Scholar 

  • Bartoli GM, Galeotti T, Azzi A (1977) Production of superoxide anions and hydrogen peroxide in Ehrlich ascites tumour cell nuclei. BBA – General Subjects 497(2):622–626

    CAS  PubMed  Google Scholar 

  • Baruah M, Qin W, Vallée RAL, Beljonne D, Rohand T, Dehaen W, Boens N (2005) A highly potassium-selective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Org Lett 7(20):4377–4380

    CAS  PubMed  Google Scholar 

  • Belzile M-N, Godin R, Durantini AM, Cosa G (2016) Monitoring chemical and biological electron transfer reactions with a fluorogenic vitamin k analogue probe. J Am Chem Soc 138(50):16388–16397

    CAS  PubMed  Google Scholar 

  • Bindokas VP, Jordán J, Lee CC, Miller RJ (1996) Superoxide production in rat hippocampal neurons: selective imaging with hydroethidine. J Neurosci 16(4):1324–1336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem 83(12):2213–2228

    CAS  Google Scholar 

  • Bystryak S, Goldiner I, Niv A, Nasser AM, Goldstein L (1995) A homogeneous immunofluorescence assay based on dye-sensitized Photobleaching. Anal Biochem 225(1):127–134

    CAS  PubMed  Google Scholar 

  • Caldefie-Chézet F, Walrand S, Moinard C, Tridon A, Chassagne J, Vasson MP (2002) Is the neutrophil reactive oxygen species production measured by luminol and lucigenin chemiluminescence intra or extracellular? Comparison with DCFH-DA flow cytometry and cytochrome c reduction. Clin Chim Acta 319(1):9–17

    PubMed  Google Scholar 

  • Cao G, Alessio HM, Cutler RG (1993) Oxygen-radical absorbance capacity assay for antioxidants. Free Radic Biol Med 14(3):303–311

    CAS  PubMed  Google Scholar 

  • Chang MCY, Pralle A, Isacoff EY, Chang CJ (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J Am Chem Soc 126(47):15392–15393

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Wang F, Hyun JY, Wei T, Qiang J, Ren X, Shin I, Yoon J (2016) Recent progress in the development of fluorescent, luminescent and colorimetric probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 45(10):2976–3016

    CAS  PubMed  Google Scholar 

  • Chen L, Cho MK, Wu D, Kim HM, Yoon J (2019) Two-photon fluorescence probe for selective monitoring of superoxide in live cells and tissues. Anal Chem 91(22):14691–14696

    CAS  PubMed  Google Scholar 

  • Corey EJ, Taylor WC (1964) A study of the peroxidation of organic compounds by externally generated singlet oxygen molecules. J Am Chem Soc 86(18):3881–3882

    CAS  Google Scholar 

  • Costa D, Fernandes E, Santos JLM, Pinto DCGA, Silva AMS, Lima JLFC (2007) New noncellular fluorescence microplate screening assay for scavenging activity against singlet oxygen. Anal Bioanal Chem 387(6):2071–2081

    CAS  PubMed  Google Scholar 

  • Crosby DG, Berthold RV (1962) Fluorescence spectra of some simple coumarins. Anal Biochem 4(5):349–357

    CAS  PubMed  Google Scholar 

  • Crow JP (1997) Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: implications for intracellular measurement of reactive nitrogen and oxygen species. Nitric Oxide 1(2):145–157

    CAS  PubMed  Google Scholar 

  • Cui G, Ye Z, Chen J, Wang G, Yuan J (2011) Development of a novel terbium(III) chelate-based luminescent probe for highly sensitive time-resolved luminescence detection of hydroxyl radical. Talanta 84(3):971–976

    CAS  PubMed  Google Scholar 

  • De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT et al (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97(5):1515–1566

    PubMed  Google Scholar 

  • Dorta E, Fuentes-Lemus E, Speisky H, Lissi E, López-Alarcón C (2018) Evaluation of the antioxidant capacity of food samples: a chemical examination of the oxygen radical absorbance capacity assay. In: Apak R, Capanoglu E, Shahidi F (eds) Measurement of antioxidant activity and capacity: recent trends and applications. Wiley, Oxford, pp 39–55

    Google Scholar 

  • Drummen GPC (2012) Fluorescent probes and fluorescence (microscopy) techniques — illuminating biological and biomedical research. Molecules 17(12):14067–14090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drummen GPC, van Liebergen LCM (2002) Op den Kamp JAF, Post JA. C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro)spectroscopic characterization and validation of methodology. Free Radic Biol Med 33(4):473–490

    CAS  PubMed  Google Scholar 

  • Drummen GPC, Op den Kamp JAF, Post JA (1999) Validation of the peroxidative indicators, cis-parinaric acid and parinaroyl-phospholipids, in a model system and cultured cardiac myocytes. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1436(3):370–382

    CAS  Google Scholar 

  • Entradas T, Waldron S, Volk M (2020) The detection sensitivity of commonly used singlet oxygen probes in aqueous environments. J Photochem Photobiol B Biol 204:111787

    CAS  Google Scholar 

  • Fahrni CJ, O'Halloran TV (1999) Aqueous coordination chemistry of quinoline-based fluorescence probes for the biological chemistry of zinc. J Am Chem Soc 121(49):11448–11458

    CAS  Google Scholar 

  • Gao JJ, Xu KH, Tang B, Yin LL, Yang GW, An LG (2007) Selective detection of superoxide anion radicals generated from macrophages by using a novel fluorescent probe. FEBS J 274(7):1725–1733

    CAS  PubMed  Google Scholar 

  • Gao X, Ding C, Zhu A, Tian Y (2014) Carbon-dot-based ratiometric fluorescent probe for imaging and biosensing of superoxide anion in live cells. Anal Chem 86(14):7071–7078

    CAS  PubMed  Google Scholar 

  • Godin R, Liu H-W, Cosa G (2014) Ambient condition oxidation in individual liposomes observed at the single molecule level. Chem Sci 5(6):2525–2529

    CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65(2–3):45–80

    CAS  PubMed  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2006) Use of fluorescence probes for detection of reactive nitrogen species: a review. J Fluoresc 16(1):119–139

    CAS  PubMed  Google Scholar 

  • Green JA, Singer LA (1974) Di-tert-butyl nitroxide as a convenient probe for excited singlet states. Pyrene luminescence. J Am Chem Soc 96(9):2730–2733

    CAS  Google Scholar 

  • Greene LE, Lincoln R, Cosa G (2017) Rate of lipid peroxyl radical production during cellular homeostasis unraveled via fluorescence imaging. J Am Chem Soc 139(44):15801–15811

    CAS  PubMed  Google Scholar 

  • Greene LE, Lincoln R, Cosa G (2018) Spatio-temporal monitoring of lipid peroxyl radicals in live cell studies combining fluorogenic antioxidants and fluorescence microscopy methods. Free Radic Biol Med 128(February):124–136

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260(6):3440–3450

    CAS  PubMed  Google Scholar 

  • Haidasz EA, Van Kessel ATM, Pratt DA (2016) A continuous visible light spectrophotometric approach to accurately determine the reactivity of radical-trapping antioxidants. J Org Chem 81(3):737–744

    CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, Oxford

    Google Scholar 

  • Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142(2):231–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanthorn JJ, Haidasz E, Gebhardt P, Pratt DA (2012) A versatile fluorescence approach to kinetic studies of hydrocarbon autoxidations and their inhibition by radical-trapping antioxidants. Chem Commun 48(81):10141–10143

    CAS  Google Scholar 

  • Henderson LM, Chappell JB (1993) Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur J Biochem 217(3):973–980

    CAS  PubMed  Google Scholar 

  • Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK (2002) Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated β-cyclodextrin as the solubility enhancer. J Agric Food Chem 50(7):1815–1821

    CAS  PubMed  Google Scholar 

  • Iuliano L, Piccheri C, Coppola I, Praticò D, Micheletta F, Violi F (2000) Fluorescence quenching of dipyridamole associated to peroxyl radical scavenging: a versatile probe to measure the chain breaking antioxidant activity of biomolecules. Biochim Biophys Acta Gen Subj 1474(2):177–182

    CAS  Google Scholar 

  • Jablonski A (1933) Efficiency of anti-stokes fluorescence in dyes. Nature 131(3319):839–840

    CAS  Google Scholar 

  • Johnson ID, Kang HC, Haugland RP (1991) Fluorescent membrane probes incorporating dipyrrometheneboron difluoride fluorophores. Anal Biochem 198(2):228–237

    CAS  PubMed  Google Scholar 

  • Keston AS, Brandt R (1965) The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal Biochem 11(1):1–5

    CAS  PubMed  Google Scholar 

  • Kooy NW, Royall JA, Ischiropoulos H, Beckman JS (1994) Peroxynitrite-mediated oxidation of dihydrorhodamine 123. Free Radic Biol Med 16(2):149–156

    CAS  PubMed  Google Scholar 

  • Krumova K, Cosa G (2013) Fluorogenic probes for imaging reactive oxygen species. Photochemistry 41:279–301

    CAS  Google Scholar 

  • Krumova K, Oleynik P, Karam P, Cosa G (2009) Phenol-based lipophilic fluorescent antioxidant indicators: a rational approach. J Org Chem 74(10):3641–3651

    CAS  PubMed  Google Scholar 

  • Krumova K, Friedland S, Cosa G (2012) How lipid unsaturation, peroxyl radical partitioning, and chromanol lipophilic tail affect the antioxidant activity of α-tocopherol: direct visualization via high-throughput fluorescence studies conducted with fluorogenic α-tocopherol analogues. J Am Chem Soc 134(24):10102–10113

    CAS  PubMed  Google Scholar 

  • Krumova K, Greene LE, Cosa G (2013) Fluorogenic α-tocopherol analogue for monitoring the antioxidant status within the inner mitochondrial membrane of live cells. J Am Chem Soc 135(45):17135–17143

    CAS  PubMed  Google Scholar 

  • Kumar M, Kumar N, Bhalla V, Sharma PR, Qurishi Y (2012) A charge transfer assisted fluorescent probe for selective detection of hydrogen peroxide among different reactive oxygen species. Chem Commun 48(39):4719–4721

    CAS  Google Scholar 

  • Kusio J, Sitkowska K, Konopko A, Litwinienko G (2020) Hydroxycinnamyl derived BODIPY as a lipophilic fluorescence probe for peroxyl radicals. Antioxidants 9(1):88

    CAS  PubMed Central  Google Scholar 

  • Kuypers FA, van den Berg JJ, Schalkwijk C, Roelofsen B (1987) Op den Kamp JA. Parinaric acid as a sensitive fluorescent probe for the determination of lipid peroxidation. Biochim Biophys Acta 921(2):266–274

    CAS  PubMed  Google Scholar 

  • Lageweg W, Steen I, Tager JM, Wanders RJA (1991) A fluorimetric assay for acyl-CoA synthetase activities. Anal Biochem 197(2):384–388

    CAS  PubMed  Google Scholar 

  • Laguerre M, Lecomte J, Villeneuve P (2007) Evaluation of the ability of antioxidants to counteract lipid oxidation: existing methods, new trends and challenges. Prog Lipid Res 46(5):244–282

    CAS  PubMed  Google Scholar 

  • Laguerre M, Bily A, Birtić S (2020) Chapter 7 – lipid oxidation in food. In: Galanakis CM (ed) Lipids and edible oils. Academic Press, Cambridge, pp 243–287

    Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, Berlin, pp 1–954

    Google Scholar 

  • Lampard EV, Sedgwick AC, Sun X, Filer KL, Hewins SC, Kim G et al (2018) Boronate-based fluorescence probes for the detection of hydrogen peroxide. ChemistryOpen 7:262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Blough NV, Gutierrez PL (2000) Trace detection of hydroxyl radicals during the redox cycling of low concentrations of diaziquone: a new approach. Free Radic Biol Med 29(6):548–556

    CAS  PubMed  Google Scholar 

  • Li P, Zhang W, Li K, Liu X, Xiao H, Zhang W et al (2013) Mitochondria-targeted reaction-based two-photon fluorescent probe for imaging of superoxide anion in live cells and in vivo. Anal Chem 85(20):9877–9881

    CAS  PubMed  Google Scholar 

  • Li P, McClements DJ, Decker EA (2020) Application of flow cytometry as novel technology in studying lipid oxidation and mass transport phenomena in oil-in-water emulsions. Food Chem 315:126225

    CAS  PubMed  Google Scholar 

  • Liao Y-X, Li K, Wu M-Y, Wu T, Yu X-Q (2014) A selenium-contained aggregation-induced “turn-on” fluorescent probe for hydrogen peroxide. Org Biomol Chem 12(19):3004–3008

    CAS  PubMed  Google Scholar 

  • Lindqvist C, Nordström T (2001) Generation of hydroxyl radicals by the antiviral compound phosphonoformic acid (foscarnet). Pharmacol Toxicol 89(1):49–55

    CAS  PubMed  Google Scholar 

  • Liu H, Zhang L, Chen J, Zhai Y, Zeng Y, Li L (2013) A novel functional imidazole fluorescent ionic liquid: simple and efficient fluorescent probes for superoxide anion radicals. Anal Bioanal Chem 405(29):9563–9570

    CAS  PubMed  Google Scholar 

  • Lo LC, Chu CY (2003) Development of highly selective and sensitive probes for hydrogen peroxide. Chem Commun 21:2728–2729

    Google Scholar 

  • Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107(11):4891–4932

    CAS  PubMed  Google Scholar 

  • Maeda H, Fukuyasu Y, Yoshida S, Fukuda M, Saeki K, Matsuno H et al (2004) Fluorescent probes for hydrogen peroxide based on a non-oxidative mechanism. Angewandte Chemie – International Edition. 43(18):2389–2391

    CAS  PubMed  Google Scholar 

  • Maeda H, Yamamoto K, Nomura Y, Kohno I, Hafsi L, Ueda N et al (2005) A design of fluorescent probes for superoxide based on a nonredox mechanism. J Am Chem Soc 127(1):68–69

    CAS  PubMed  Google Scholar 

  • Makrigiorgos GM, Baranowska-Kortylewicz J, Bump E, Sahu SK, Berman RM, Kassis AI (1993) A method for detection of hydroxyl radicals in the vicinity of biomolecules using radiation-induced fluorescence of coumarin. Int J Radiat Biol 63(4):445–458

    CAS  PubMed  Google Scholar 

  • Makrigiorgos GM, Kassis AI, Mahmood A, Bump EA, Savvides P (1997) Novel fluorescein-based flow-cytometric method for detection of lipid peroxidation. Free Radic Biol Med 22(1–2):93–100

    CAS  PubMed  Google Scholar 

  • Maulik G, Kassis AI, Savvides P, Makrigiorgos GM (1998) Fluoresceinated phosphoethanolamine for flow-cytometric measurement of lipid peroxidation. Free Radic Biol Med 25(6):645–653

    CAS  PubMed  Google Scholar 

  • Medvedeva N, Martin VV, Weis AL, Likhtenshten GI (2004) Dual fluorophore-nitronyl probe for investigation of superoxide dynamics and antioxidant status of biological systems. J Photochem Photobiol A Chem 163(1):45–51

    CAS  Google Scholar 

  • Meng L, Wu Y, Yi T (2014) A ratiometric fluorescent probe for the detection of hydroxyl radicals in living cells. Chem Commun 50(37):4843–4845

    CAS  Google Scholar 

  • Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264(14):8171–8178

    CAS  PubMed  Google Scholar 

  • Mohanty JG, Jaffe JS, Schulman ES, Raible DG (1997) A highly sensitive fluorescent micro-assay of H2O2 release from activated human leukocytes using a dihydroxyphenoxazine derivative. J Immunol Methods 202(2):133–141

    CAS  PubMed  Google Scholar 

  • Nagano T (2010) Development of fluorescent probes for bioimaging applications. Proc Jpn Acad Ser B Phys Biol Sci 86(8):837–847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naguib YM (1998) A fluorometric method for measurement of peroxyl radical scavenging activities of lipophilic antioxidants. Anal Biochem 265(2):290–298

    CAS  PubMed  Google Scholar 

  • Naguib YMA (2000a) A fluorometric method for measurement of oxygen radical-scavenging activity of water-soluble antioxidants. Anal Biochem 284(1):93–98

    CAS  PubMed  Google Scholar 

  • Naguib YMA (2000b) Antioxidant activities of astaxanthin and related carotenoids. J Agric Food Chem 48(4):1150–1154

    CAS  PubMed  Google Scholar 

  • Noguchi N, Numano R, Kaneda H, Niki E (1998) Oxidation of lipids in low density lipoprotein particles. Free Radic Res 29(1):43–52

    CAS  PubMed  Google Scholar 

  • Noomnarm U, Clegg RM (2009) Fluorescence lifetimes: fundamentals and interpretations. Photosynth Res 101(2–3):181–194

    CAS  PubMed  Google Scholar 

  • Ohyashiki T, Nunomura M, Katoh T (1999) Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1,3-diphenylisobenzofuran. Biochim Biophys Acta Biomembr 1421(1):131–139

    CAS  Google Scholar 

  • Okimoto Y, Watanabe A, Niki E, Yamashita T, Noguchi N (2000) A novel fluorescent probe diphenyl-1-pyrenylphosphine to follow lipid peroxidation in cell membranes. FEBS Lett 474(2–3):137–140

    CAS  Google Scholar 

  • Oleynik P, Ishihara Y, Cosa G (2007) Design and synthesis of a BODIPY-α-tocopherol adduct for use as an off/on fluorescent antioxidant indicator. J Am Chem Soc 129(7):1842–1843

    CAS  PubMed  Google Scholar 

  • Olojo RO, Xia RH, Abramson JJ (2005) Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 339(2):338–344

    CAS  PubMed  Google Scholar 

  • Ou B, Hampsch-Woodill M, Prior RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49(10):4619–4626

    CAS  PubMed  Google Scholar 

  • Ou B, Chang T, Huang D, Prior RL (2013) Determination of total antioxidant capacity by oxygen radical absorbance capacity (ORAC) using fluorescein as the fluorescence probe: first action 2012.23. J AOAC Int 96(6):1372–1376

    CAS  PubMed  Google Scholar 

  • Palamakumbura AH, Trackman PC (2002) A fluorometric assay for detection of lysyl oxidase enzyme activity in biological samples. Anal Biochem 300(2):245–251

    CAS  PubMed  Google Scholar 

  • Pastor I, Esquembre R, Micol V, Mallavia R, Mateo CR (2004) A ready-to-use fluorimetric biosensor for superoxide radical using superoxide dismutase and peroxidase immobilized in sol-gel glasses. Anal Biochem 334(2):335–343

    CAS  PubMed  Google Scholar 

  • Pedersen SK, Holmehave J, Blaikie FH, Gollmer A, Breitenbach T, Jensen HH et al (2014) Aarhus sensor green: a fluorescent probe for singlet oxygen. J Org Chem 79(7):3079–3087

    CAS  PubMed  Google Scholar 

  • Peng X, Du J, Fan J, Wang J, Wu Y, Zhao J, Sun S, Xu T (2007) A selective fluorescent sensor for imaging Cd2+ in living cells. J Am Chem Soc 129(6):1500–1501

    CAS  PubMed  Google Scholar 

  • Pou S, Huang YI, Bhan A, Bhadti VS, Hosmane RS, Wu SY et al (1993) A fluorophore-containing nitroxide as a probe to detect superoxide and hydroxyl radical generated by stimulated neutrophils. Anal Biochem 212(1):85–90

    CAS  PubMed  Google Scholar 

  • Prior RL, Hoang H, Gu L, Wu X, Bacchiocca M, Howard L et al (2003) Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J Agric Food Chem 51(11):3273–3279

    CAS  PubMed  Google Scholar 

  • Qu X, Kirschenbaum LJ, Borish ET (2000) Hydroxyterephthalate as a fluorescent probe for hydroxyl radicals: application to hair melanin. Photochem Photobiol 71(3):307–313

    CAS  PubMed  Google Scholar 

  • Ruch W, Cooper PH, Baggiolini M (1983) Assay of H2O2 production by macrophages and neutrophils with homovanillic acid and horse-radish peroxidase. J Immunol Methods 63(3):347–357

    CAS  PubMed  Google Scholar 

  • Schaich K (2008) Co-oxidations of oxidizing lipids: Reactions with proteins. In: Kamal-Eldin A, Min D (eds) Lipid oxidation pathways, 2nd edn. AOCS Press, Champaign, pp 183–274

    Google Scholar 

  • Setsukinai K, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278(5):3170–3175

    CAS  PubMed  Google Scholar 

  • Shah R, Pratt DA (2016) Determination of key hydrocarbon autoxidation products by fluorescence. J Org Chem 81(15):6649–6656

    CAS  PubMed  Google Scholar 

  • Shah R, Farmer LA, Zilka O, Van Kessel ATM, Pratt DA (2019) Beyond DPPH: Use of fluorescence-enabled inhibited autoxidation to predict oxidative cell death rescue. Cell Chemical Biol 26(11):1594–607.e7

    CAS  Google Scholar 

  • Sherman WR, Robins E (1968) Fluorescence of substituted 7-hydroxycoumarins. Anal Chem 40(4):803–805

    CAS  PubMed  Google Scholar 

  • Singh A, McIntyre NR, Koroll GW (1978) Photochemical formation of metastable species from 1,3-diphenylisobenzofuran. Photochem Photobiol 28(4–5):595–601

    CAS  Google Scholar 

  • Soh N (2006) Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal Bioanal Chem 386(3):532–543

    CAS  PubMed  Google Scholar 

  • Spiteller G (2006) Peroxyl radicals: inductors of neurodegenerative and other inflammatory diseases. Their origin and how they transform cholesterol, phospholipids, plasmalogens, polyunsaturated fatty acids, sugars, and proteins into deleterious products. Free Radic Biol Med 41(3):362–387

    CAS  PubMed  Google Scholar 

  • Staniek K, Nohl H (1999) H2O2 detection from intact mitochondria as a measure for one-electron reduction of dioxygen requires a non-invasive assay system. Biochim Biophys Acta Bioenerg 1413(2):70–80

    CAS  Google Scholar 

  • Tai C, Gu X, Zou H, Guo Q (2002) A new simple and sensitive fluorometric method for the determination of hydroxyl radical and its application. Talanta 58(4):661–667

    CAS  PubMed  Google Scholar 

  • Tanaka K, Miura T, Umezawa N, Urano Y, Kikuchi K, Higuchi T et al (2001) Rational design of fluorescein-based fluorescence probes. Mechanism-based design of a maximum fluorescence probe for singlet oxygen. J Am Chem Soc 123(11):2530–2536

    CAS  PubMed  Google Scholar 

  • Tang B, Zhang L, Hu J-X, Li P, Zhang H, Zhao Y-X (2004a) Indirect determination of superoxide anion radical in the plant of red sage based on vanillin-8-aminoquinoline with fluorescence. Anal Chim Acta 502(1):125–131

    CAS  Google Scholar 

  • Tang B, Zhang L, Zhang LL (2004b) Study and application of flow injection spectrofluorimetry with a fluorescent probe of 2-(2-pyridil)-benzothiazoline for superoxide anion radicals. Anal Biochem 326(2):176–182

    CAS  PubMed  Google Scholar 

  • Tang B, Zhang L, Geng Y (2005) Determination of the antioxidant capacity of different food natural products with a new developed flow injection spectrofluorimetry detecting hydroxyl radicals. Talanta 65(3):769–775

    CAS  PubMed  Google Scholar 

  • Tikekar RV, Johnson A, Nitin N (2011) Fluorescence imaging and spectroscopy for real-time, in-situ characterization of interactions of free radicals with oil-in-water emulsions. Food Res Int 44(1):139–145

    CAS  Google Scholar 

  • Uluata S, Durmaz G, McClements DJ, Decker EA (2021) Comparing DPPP fluorescence and UV based methods to assess oxidation degree of krill oil-in-water emulsions. Food Chem 339:127898

    CAS  PubMed  Google Scholar 

  • Umezawa N, Tanaka K, Urano Y, Kikuchi K, Higuchi T, Nagano T (1999) Novel fluorescent probes for singlet oxygen. Angewandte Chemie – International Edition 38(19):2899–2901

    CAS  PubMed  Google Scholar 

  • Usui Y (1973) Determination of quantum yield of singlet oxygen formation by photosensitization. Chem Lett 1973:743–744

    Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5–6):612–616

    CAS  PubMed  Google Scholar 

  • Wilkinson F, Brummer JG (1981) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. J Phys Chem Ref Data 10(4):809–999

    CAS  Google Scholar 

  • Wu L, Sedgwick AC, Sun X, Bull SD, He X-P, James TD (2019a) Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species. Acc Chem Res 52(9):2582–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Liu L, Han HH, Tian X, Odyniec ML, Feng L et al (2019b) ESIPT-based fluorescence probe for the ratiometric detection of superoxide. New J Chem 43:2875

    CAS  Google Scholar 

  • Würth C, Geißler D, Behnke T, Kaiser M, Resch-Genger U (2015) Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal Bioanal Chem 407(1):59–78

    PubMed  Google Scholar 

  • Xiao H, Parkin KL (2002) Antioxidant functions of selected allium thiosulfinates and s-alk(en)yl-l-cysteine sulfoxides. J Agric Food Chem 50(9):2488–2493

    CAS  PubMed  Google Scholar 

  • Xu K, Wang L, Qiang M, Wang L, Li P, Tang B (2011) A selective near-infrared fluorescent probe for singlet oxygen in living cells. Chem Commun 47(26):7386–7388

    CAS  Google Scholar 

  • Yan EB, Unthank JK, Castillo-Melendez M, Miller SL, Langford SJ, Walker DW (2005) Novel method for in vivo hydroxyl radical measurement by microdialysis in fetal sheep brain in utero. J Appl Physiol 98(6):2304–2310

    CAS  PubMed  Google Scholar 

  • Yang XF, Guo XQ (2001) Investigation of the anthracene-nitroxide hybrid molecule as a probe for hydroxyl radicals. Analyst 126(10):1800–1804

    CAS  PubMed  Google Scholar 

  • Yang S, Verhoeff AA, Merkx DWH, van Duynhoven JPM, Hohlbein J (2020) Quantitative spatiotemporal mapping of lipid and protein oxidation in mayonnaise. Antioxidants 9(12):1–13

    Google Scholar 

  • Yapici NB, Jockusch S, Moscatelli A, Mandalapu SR, Itagaki Y, Bates DK et al (2012) New rhodamine nitroxide based fluorescent probes for intracellular hydroxyl radical identification in living cells. Org Lett 14(1):50–53

    CAS  PubMed  Google Scholar 

  • Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D (2007) A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule. Org Lett 9(12):2313–2316

    CAS  PubMed  Google Scholar 

  • Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128(1):10–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the National Science Centre, Poland (NCN grant No. 2018/31/B/ST4/02354) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grzegorz Litwinienko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kusio, J., Litwinienko, G. (2022). Fluorescent Probes for Monitoring Oxidation of Lipids and Assessment of Antioxidant Activity. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_3

Download citation

Publish with us

Policies and ethics