Skip to main content

Olive Oil Phenolic Compounds as Antioxidants in Functional Foods: Description, Sources and Stability

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

A key component of the Mediterranean diet is virgin olive oil (VOO) which has been recommended in the prevention and protection against cardiovascular diseases, different types of cancer, type 2 diabetes melittus, obesity and metabolic syndrome. VOO presents a unique chemical composition comprising a high monosaturated fatty acid content and valuable minor components like phytosterols, vitamin E and polyphenols. The presence of a relatively high amount of polyphenols gives to this oil an advantage when compared to other common edible oils. Emerging evidence have shown that these health promoting properties are not only due to their free radical scavenging capacity, but also to their ability to down-regulate inflammatory mediators and to affect the expression of genes involved in pathogenesis of many diseases. Due to the great bioprotective capacity shown by olive oil phenolic compounds, these have become desirable for the development of functional foods. Thus, the search for effective and accessible alternative sources of these compounds as well as the understanding of their antioxidant activity and stability in food matrices has become a critical issue and the object of several studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-ElGhany ME, Ammar MS, Hegazy AE (2010) Use of olive waste cake extract as a natural antioxidant for improving the stability of heated sunflower oil. World Appl Sci J 11(1):106–113

    CAS  Google Scholar 

  • Albertos I, Avena-Bustillos RJ, Martín-Diana AB, Du W-X, Rico D, McHugh TH (2017) Antimicrobial olive leaf gelatin films for enhancing the quality of cold-smoked Salmon. Food Packag Shelf Life 13:49–55

    Google Scholar 

  • Aliakbarian B, Casale M, Paini M, Casazza AA, Lanteri S, Perego P (2015) Production of a novel fermented milk fortified with natural antioxidants and its analysis by NIR spectroscopy. LWT – Food Sci Technol 62(1, Part 2):376–383

    CAS  Google Scholar 

  • Almeida J, Losada-Barreiro S, Costa M, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2016) Interfacial concentrations of hydroxytyrosol and its lipophilic esters in intact olive oil-in-water emulsions: effects of antioxidant hydrophobicity, surfactant concentration, and the oil-to-water ratio on the oxidative stability of the emulsions. J Agric Food Chem 64(25):5274–5283

    CAS  PubMed  Google Scholar 

  • Amiot M-J, Fleuriet A, Macheix J-J (1989) Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28(1):67–69

    CAS  Google Scholar 

  • Aparicio R, Roda L, Albi MA, Gutiérrez F (1999 Oct 1) Effect of various compounds on virgin olive oil stability measured by Rancimat. J Agric Food Chem 47(10):4150–4155

    CAS  PubMed  Google Scholar 

  • Baiano A, Viggiani I, Terracone C, Romaniello R, Del Nobile MA (2015) Physical and sensory properties of bread enriched with phenolic aqueous extracts from vegetable wastes. Czech J Food Sci 33(3):247–253

    Google Scholar 

  • Bakır T, Yıldoğan Beker B, Sönmezoğlu İ, İmer F, Apak R (2013) Antioxidant and prooxidant effects of α-tocopherol in a linoleic acid-copper(II)-ascorbate system. Eur J Lipid Sci Technol 115(3):372–376

    Google Scholar 

  • Baldioli M, Servili M, Perretti G, Montedoro GF (1996) Antioxidant activity of tocopherols and phenolic compounds of virgin olive oil. J Am Oil Chem Soc 73(11):1589–1593

    CAS  Google Scholar 

  • Banias G, Achillas C, Vlachokostas C, Moussiopoulos N, Stefanou M (2017) Environmental impacts in the life cycle of olive oil: a literature review. J Sci Food Agric 97(6):1686–1697

    CAS  PubMed  Google Scholar 

  • Bethke PC, Jansky SH (2008) The effects of boiling and leaching on the content of potassium and other minerals in potatoes. J Food Sci 73(5):H80–H85

    CAS  PubMed  Google Scholar 

  • Bilgin M, Şahin S (2013) Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea europaea) leaves. J Taiwan Inst Chem Eng 44(1):8–12

    CAS  Google Scholar 

  • Blekas G, Tsimidou M, Boskou D (1995) Contribution of α-tocopherol to olive oil stability. Food Chem 52(3):289–294

    CAS  Google Scholar 

  • Blekas G, Psomiadou E, Tsimidou M, Boskou D (2002) On the importance of total polar phenols to monitor the stability of Greek virgin olive oil. Eur J Lipid Sci Technol 104(6):340–346

    CAS  Google Scholar 

  • Brenes M, García A, García P, Garrido A (2001) Acid hydrolysis of Secoiridoid Aglycons during storage of virgin olive oil. J Agric Food Chem 49(11):5609–5614

    CAS  PubMed  Google Scholar 

  • Buckland G, Gonzalez CA (2015) The role of olive oil in disease prevention: a focus on the recent epidemiological evidence from cohort studies and dietary intervention trials. Br J Nutr 113(S2):S94–S101

    CAS  PubMed  Google Scholar 

  • Caporaso N, Formisano D, Genovese A (2018) Use of phenolic compounds from olive mill wastewater as valuable ingredients for functional foods. Crit Rev Food Sci Nutr 58(16):2829–2841

    CAS  PubMed  Google Scholar 

  • Caputo AR, Morone G, Di Napoli MA, Rufrano D, Sabia E, Paladino F et al (2015) Effect of destoned olive cake on the aromatic profile of cows’ milk and dairy products: comparison of two techniques for the headspace aroma profile analysis. Ital J Agron 10:15–20

    Google Scholar 

  • Carrasco-Pancorbo A, Cerretani L, Bendini A, Segura-Carretero A, Gallina-Toschi T, Lercker G, Fernández-Gutiérrez A (2006) Evaluation of individual antioxidant activity of single phenolic compounds on virgin olive oil. Prog Nutr 8(1):28–39

    CAS  Google Scholar 

  • Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mater 248–249:185–193

    PubMed  Google Scholar 

  • Castellani F, Bernardi N, Vitali A, Marone E, Grotta L, Martino G (2018) Proteolytic volatile compounds in milk and cheese of cows fed dried olive pomace supplementation. J Anim Feed Sci 27(4):361–365

    Google Scholar 

  • Castellani F, Vitali A, Bernardi N, Marone E, Grotta L, Martino G (2019) Lipolytic volatile compounds in dairy products derived from cows fed with dried olive pomace. Eur Food Res Technol 245(1):159–166

    CAS  Google Scholar 

  • Cecchi L, Schuster N, Flynn D, Bechtel R, Bellumori M, Innocenti M et al (2019) Sensory profiling and consumer acceptance of pasta, bread, and granola Bar fortified with dried olive pomace (Pâté): a byproduct from virgin olive oil production. J Food Sci 84(10):2995–3008

    CAS  PubMed  Google Scholar 

  • Cedola A, Cardinali A, Del Nobile MA, Conte A (2017) Fish burger enriched by olive oil industrial by-product. Food Sci Nutr 5(4):837–844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cedola A, Cardinali A, Del Nobile MA, Conte A (2019) Enrichment of bread with olive oil industrial by-product. J Agric Sci Technol 9:119–127

    CAS  Google Scholar 

  • Cedola A, Cardinali A, D’Antuono I, Conte A, Del Nobile MA (2020) Cereal foods fortified with by-products from the olive oil industry. Food Biosci 33:100490

    CAS  Google Scholar 

  • Cicerale S, Lucas LJ, Keast RSJ (2012) Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr Opin Biotechnol 23(2):129–135

    CAS  PubMed  Google Scholar 

  • Cillard J, Cillard P, Cormier M, Girre L (1980) α-Tocopherol prooxidant effect in aqueous media: increased autoxidation rate of linoleic acid. J Am Oil Chem Soc 57(8):252

    CAS  Google Scholar 

  • Cinquanta L, Esti M, Di Matteo M (2001) Oxidative stability of virgin olive oils. J Am Oil Chem Soc 78(12):1197

    CAS  Google Scholar 

  • Costa M, Losada-Barreiro S, Paiva-Martins F, Bravo-Díaz C, Romsted LS (2015) A direct correlation between the antioxidant efficiencies of caffeic acid and its alkyl esters and their concentrations in the interfacial region of olive oil emulsions. The pseudophase model interpretation of the “cut-off” effect. Food Chem 175:233–242

    CAS  PubMed  Google Scholar 

  • Costa M, Losada-Barreiro S, Bravo-Díaz C, Vicente AA, Monteiro LS, Paiva-Martins F (2020) Influence of AO chain length, droplet size and oil to water ratio on the distribution and on the activity of gallates in fish oil-in-water emulsified systems: emulsion and nanoemulsion comparison. Food Chem 310:125716

    CAS  PubMed  Google Scholar 

  • Covas M-I, de la Torre R, Fitó M (2015) Virgin olive oil: a key food for cardiovascular risk protection. Br J Nutr 113(S2):S19–S28

    CAS  PubMed  Google Scholar 

  • Da Silva SL, Marangoni C, Brum DS, Vendruscolo RG, Silva MS, de Moura HC et al (2018) Effect of dietary olive leaves on the lipid and protein oxidation and bacterial safety of chicken hamburgers during frozen storage. Int Food Res J 25(1):383–391

    Google Scholar 

  • Dal Bosco A, Mourvaki E, Cardinali R, Servili M, Sebastiani B, Ruggeri S et al (2012) Effect of dietary supplementation with olive pomaces on the performance and meat quality of growing rabbits. Meat Sci 92(4):783–788

    CAS  PubMed  Google Scholar 

  • Daskalaki D, Kefi G, Kotsiou K, Tasioula-Margari M (2009) Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. J Food Nutr Res 48(1):31–41

    CAS  Google Scholar 

  • de Moraes CT, de Oliveira RAD, Alves V, Bandarra N, Moldão-Martins M, Hickmann Flôres S (2018) Active food packaging prepared with chitosan and olive pomace. Food Hydrocoll 74:139–150

    Google Scholar 

  • Dermeche S, Nadour M, Larroche C, Moulti-Mati F, Michaud P (2013) Olive mill wastes: biochemical characterizations and valorization strategies. Process Biochem 48(10):1532–1552

    CAS  Google Scholar 

  • Difonzo G, Russo A, Trani A, Paradiso VM, Ranieri M, Pasqualone A et al (2017) Green extracts from Coratina olive cultivar leaves: antioxidant characterization and biological activity. J Funct Foods 31:63–70

    CAS  Google Scholar 

  • Difonzo G, Pasqualone A, Silletti R, Cosmai L, Summo C, Paradiso VM et al (2018) Use of olive leaf extract to reduce lipid oxidation of baked snacks. Food Res Int 108:48–56

    CAS  PubMed  Google Scholar 

  • Djenane D, Gómez D, Yangüela J, Roncalés P, Ariño A (2019) Olive leaves extract from algerian oleaster (Olea europaea var. sylvestris) on microbiological safety and shelf-life stability of raw halal minced beef during display. Foods 8(1):10

    CAS  Google Scholar 

  • El-Abbassi A, Kiai H, Hafidi A (2012) Phenolic profile and antioxidant activities of olive mill wastewater. Food Chem 132(1):406–412

    CAS  PubMed  Google Scholar 

  • Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al (2018) Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J med [internet]. 378(25):e34. Available from: https://doi.org/10.1056/NEJMoa1800389

  • Fabiani R (2016) Anti-cancer properties of olive oil secoiridoid phenols: a systematic review of in vivo studies. Food Funct 7(10):4145–4159

    CAS  PubMed  Google Scholar 

  • Farag RS, Mahmoud EA, Basuny AM (2007) Use crude olive leaf juice as a natural antioxidant for the stability of sunflower oil during heating. Int J Food Sci Technol 42(1):107–115

    CAS  Google Scholar 

  • Flamminii F, Di Mattia CD, Difonzo G, Neri L, Faieta M, Caponio F et al (2019) From by-product to food ingredient: evaluation of compositional and technological properties of olive-leaf phenolic extracts. J Sci Food Agric 99(14):6620–6627

    CAS  PubMed  Google Scholar 

  • Flamminii F, Di Mattia CD, Nardella M, Chiarini M, Valbonetti L, Neri L et al (2020) Structuring alginate beads with different biopolymers for the development of functional ingredients loaded with olive leaves phenolic extract. Food Hydrocoll 108:105849

    CAS  Google Scholar 

  • Fregapane G, Lavelli V, León S, Kapuralin J, Desamparados SM (2006) Effect of filtration on virgin olive oil stability during storage. Eur J Lipid Sci Technol 108(2):134–142

    CAS  Google Scholar 

  • Fregapane G, Gómez-Rico A, Inarejos AM, Salvador MD (2013) Relevance of minor components stability in commercial olive oil quality during the market period. Eur J Lipid Sci Technol 115(5):541–548

    CAS  Google Scholar 

  • Garcia B, Magalhães J, Fregapane G, Salvador MD, Paiva-Martins F (2012) Potential of selected Portuguese cultivars for the production of high quality monovarietal virgin olive oil. Eur J Lipid Sci Technol 114(9):1070–1082

    CAS  Google Scholar 

  • Gök V, Bor Y (2012) Effect of olive leaf, blueberry and Zizyphus jujuba extracts on the quality and shelf life of meatball during storage. J Food, Agric Environ 10(2):190–195

    Google Scholar 

  • Gómez-Alonso S, Fregapane G, Salvador MD, Gordon MH (2003 Jan) Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J Agric Food Chem 51(3):667–672

    PubMed  Google Scholar 

  • Gómez-Alonso S, Mancebo-Campos V, Desamparados Salvador M, Fregapane G (2004) Oxidation kinetics in olive oil triacylglycerols under accelerated shelf-life testing (25–75 °C). Eur J Lipid Sci Technol 106(6):369–375

    Google Scholar 

  • Gómez-Alonso S, Mancebo-Campos V, Salvador MD, Fregapane G (2007) Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem 100(1):36–42

    Google Scholar 

  • Gordon MH, Paiva-Martins F, Almeida M (2001) Antioxidant activity of Hydroxytyrosol acetate compared with that of other olive oil polyphenols. J Agric Food Chem 49(5):2480–2485

    CAS  PubMed  Google Scholar 

  • Gutiérrez F, Fernández JL (2002) Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of “extra” quality. J Agric Food Chem 50(3):571–577

    PubMed  Google Scholar 

  • Katouzian I, Faridi Esfanjani A, Jafari SM, Akhavan S (2017) Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends Food Sci Technol 68:14–25

    CAS  Google Scholar 

  • Keys A, Mienotti A, Karvonen MJ, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Keys MH, Kromhout D, Nedeljkovic S, Punsar S, Seccareccia F, Toshima H (1986) The diet and 15-year death rate in the seven countries study. Am J Epidemiol 124(6):903–915. https://doi.org/10.1093/oxfordjournals.aje.a114480

    Article  CAS  PubMed  Google Scholar 

  • Khalifa I, Barakat H, El-Mansy HA, Soliman SA (2016) Enhancing the keeping quality of fresh strawberry using chitosan-incorporated olive processing wastes. Food Biosci 13:69–75

    CAS  Google Scholar 

  • Khemakhem I, Ahmad-Qasem MH, Catalán EB, Micol V, García-Pérez JV, Ayadi MA et al (2017) Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrason Sonochem 34:466–473

    CAS  PubMed  Google Scholar 

  • Khemakhem I, Fuentes A, Lerma-García MJ, Ayadi MA, Bouaziz M, Barat JM (2018) Olive leaf extracts for shelf life extension of salmon burgers. Food Sci Technol Int 25(2):91–100

    PubMed  Google Scholar 

  • Kim K, Jung J-Y, Kwon J-H, Yang J-W (2015) Dynamic microfiltration with a perforated disk for effective harvesting of microalgae. J Memb Sci 475:252–258

    CAS  Google Scholar 

  • Kiritsakis A, Shahidi F (2017) Olives and olive oil as functional foods: bioactivity, chemistry and processing. John Wiley & Sons, New York

    Google Scholar 

  • Kiritsakis K, Rodríguez-Pérez C, Gerasopoulos D, Segura-Carretero A (2017) Olive oil enrichment in phenolic compounds during malaxation in the presence of olive leaves or olive mill wastewater extracts. Eur J Lipid Sci Technol 119(9):1600425

    Google Scholar 

  • Krichene D, Allalout A, Mancebo-Campos V, Salvador MD, Zarrouk M, Fregapane G (2010) Stability of virgin olive oil and behaviour of its natural antioxidants under medium temperature accelerated storage conditions. Food Chem 121(1):171–177

    CAS  Google Scholar 

  • Krichene D, Salvador MD, Fregapane G (2015) Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 °C. J Agric Food Chem 63(30):6779–6786

    CAS  PubMed  Google Scholar 

  • Lavelli V, Fregapane G, Salvador MD (2006) Effect of storage on Secoiridoid and tocopherol contents and antioxidant activity of Monovarietal extra virgin olive oils. J Agric Food Chem 54(8):3002–3007

    CAS  PubMed  Google Scholar 

  • Lee O-H, Kim Y-C, Kim K-J, Kim Y-C, Lee B-Y (2007) The effects of bioactive compounds and fatty acid compositions on the oxidative stability of extra virgin olive oil varieties. Food Sci Biotechnol 16(3):415–420

    CAS  Google Scholar 

  • López-Miranda J, Pérez-Jiménez F, Ros E, De Caterina R, Badimón L, Covas MI et al (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20(4):284–294

    PubMed  Google Scholar 

  • Magrone T, Spagnoletta A, Salvatore R, Magrone M, Dentamaro F, Russo MA et al (2018) Olive leaf extracts act as modulators of the human immune response. Endocr Metab Immune Disord Drug Targets 18:85–93

    CAS  PubMed  Google Scholar 

  • Mancebo-Campos V, Fregapane G, Desamparados SM (2008) Kinetic study for the development of an accelerated oxidative stability test to estimate virgin olive oil potential shelf life. Eur J Lipid Sci Technol 110(10):969–976

    CAS  Google Scholar 

  • Mancebo-Campos V, Salvador MD, Fregapane G (2014) Antioxidant capacity of individual and combined virgin olive oil minor compounds evaluated at mild temperature (25 and 40°C) as compared to accelerated and antiradical assays. Food Chem 150:374–381

    CAS  PubMed  Google Scholar 

  • Mateos R, Trujillo M, Pérez-Camino MC, Moreda W, Cert A (2005) Relationships between oxidative stability, triacylglycerol composition, and antioxidant content in olive oil matrices. J Agric Food Chem 53(14):5766–5771

    CAS  PubMed  Google Scholar 

  • Mentella MC, Scaldaferri F, Ricci C, Gasbarrini A, Miggiano GA (2019) Cancer and mediterranean diet: a review. Nutrients 11(9):2059

    PubMed Central  Google Scholar 

  • Moudache M, Colon M, Nerín C, Zaidi F (2016) Phenolic content and antioxidant activity of olive by-products and antioxidant film containing olive leaf extract. Food Chem 212:521–527

    CAS  PubMed  Google Scholar 

  • Moudache M, Nerín C, Colon M, Zaidi F (2017) Antioxidant effect of an innovative active plastic film containing olive leaves extract on fresh pork meat and its evaluation by Raman spectroscopy. Food Chem 229:98–103

    CAS  PubMed  Google Scholar 

  • Nadour M, Laroche C, Pierre G, Delattre C, Moulti-Mati F, Michaud P (2015) Structural characterization and biological activities of polysaccharides from olive mill wastewater. Appl Biochem Biotechnol 177(2):431–445

    CAS  PubMed  Google Scholar 

  • Ninfali P, Aluigi G, Bacchiocca M, Magnani M (2001) Antioxidant capacity of extra-virgin olive oils. J Am Oil Chem Soc 78(3):243–247

    CAS  Google Scholar 

  • Nunes M, Costa ASG, Bessada S, Santos J, Puga H, Alves RC et al (2018) Olive pomace as a valuable source of bioactive compounds: a study regarding its lipid- and water-soluble components. Sci Total Environ 644:229–236

    Google Scholar 

  • Orozco-Solano MI, Priego-Capote F, Luque de Castro MD (2011) Influence of simulated deep frying on the antioxidant fraction of vegetable oils after enrichment with extracts from olive oil pomace. J Agric Food Chem 59(18):9806–9814

    CAS  PubMed  Google Scholar 

  • Ozkan G, Franco P, De Marco I, Xiao J, Capanoglu E (2019) A review of microencapsulation methods for food antioxidants: principles, advantages, drawbacks and applications. Food Chem 272:494–506

    CAS  PubMed  Google Scholar 

  • Ozvural EB (2019) Fabrication of olive leaf extract and hazelnut skin incorporated films to improve the quality of nuggets during refrigerated and deep freeze storage. Br Poult Sci 60(6):708–715

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F (2002) Olive oil antioxidant. Thesis PhD

    Google Scholar 

  • Paiva-Martins F, Gordon MH (2001) Isolation and characterization of the antioxidant component 3,4-Dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. J Agric Food Chem 49(9):4214–4219

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Gordon MH (2002) Effects of pH and ferric ions on the antioxidant activity of olive polyphenols in oil-in-water emulsions. J Am Oil Chem Soc 79(6):571–576

    CAS  Google Scholar 

  • Paiva-Martins F, Gordon MH (2005) Interactions of ferric ions with olive oil phenolic compounds. J Agric Food Chem 53(7):2704–2709

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Pinto M (2008) Isolation and characterization of a new Hydroxytyrosol derivative from olive (Olea europaea) leaves. J Agric Food Chem 56(14):5582–5588

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Gordon MH, Gameiro P (2003) Activity and location of olive oil phenolic antioxidants in liposomes. Chem Phys Lipids 124(1):23–36

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Santos V, Mangericão H, Gordon MH (2006) Effects of copper on the antioxidant activity of olive polyphenols in bulk oil and oil-in-water emulsions. J Agric Food Chem 54(10):3738–3743

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Correia R, Félix S, Ferreira P, Gordon MH (2007) Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. J Agric Food Chem 55(10):4139–4143

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Barbosa S, Pinheiro V, Mourão JL, Outor-Monteiro D (2009) The effect of olive leaves supplementation on the feed digestibility, growth performances of pigs and quality of pork meat. Meat Sci 82(4):438–443

    CAS  PubMed  Google Scholar 

  • Paiva-Martins F, Ribeirinha T, Silva A, Gonçalves R, Pinheiro V, Mourão JL, et al (2014) Effects of the dietary incorporation of olive leaves on growth performance, digestibility, blood parameters and meat quality of growing pigs. J Sci Food Agric [Internet]. 4(14):3023–9. Available from: https://doi.org/10.1002/jsfa.6650

  • Palmeri R, Parafati L, Trippa D, Siracusa L, Arena E, Restuccia C et al (2019) Addition of Olive Leaf Extract (OLE) for producing fortified fresh pasteurized milk with an extended shelf life. Antioxidants 8:255

    CAS  PubMed Central  Google Scholar 

  • Parkinson L, Cicerale S (2016) The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 21(12):1734

    PubMed Central  Google Scholar 

  • Paulo F, Santos L (2021) Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: a comprehensive review. Crit Rev Food Sci Nutr 61(6):920–945

    CAS  PubMed  Google Scholar 

  • Pellegrini N, Visioli F, Buratti S, Brighenti F (2001) Direct analysis of total antioxidant activity of olive oil and studies on the influence of heating. J Agric Food Chem 49(5):2532–2538. https://doi.org/10.1021/jf001418j

    Article  CAS  PubMed  Google Scholar 

  • Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, et al (2017) Nutrigenomics of extra-virgin olive oil: a review. BioFactors [Internet]. 43(1):17–41. Available from: https://doi.org/10.1002/biof.1318

  • Rahmanian N, Jafari SM, Wani TA (2015) Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends Food Sci Technol 42(2):150–172

    CAS  Google Scholar 

  • Rodríguez-Morató J, Xicota L, Fitó M, Farré M, Dierssen M, De la Torre R (2015) Potential role of olive oil phenolic compounds in the prevention of neurodegenerative diseases. Molecules 20:4655–4680

    PubMed  PubMed Central  Google Scholar 

  • Roig A, Cayuela ML, Sánchez-Monedero MA (2006) An overview on olive mill wastes and their valorisation methods. Waste Manag 26(9):960–969

    CAS  PubMed  Google Scholar 

  • Romani A, Lapucci C, Cantini C, Ieri F, Mulinacci N, Visioli F (2007) Evolution of minor polar compounds and antioxidant capacity during storage of bottled extra virgin olive oil. J Agric Food Chem 55(4):1315–1320

    CAS  PubMed  Google Scholar 

  • Rubió L, Motilva M-J, Macià A, Ramo T, Romero M-P (2012) Development of a phenol-enriched olive oil with both its own phenolic compounds and complementary phenols from thyme. J Agric Food Chem 60(12):3105–3112

    PubMed  Google Scholar 

  • Sabry OMM (2014) Beneficial health effects of olive leaves extracts. J Nat Sci Res 4(19):1–9

    Google Scholar 

  • Şahin S, Bilgin M (2018) Olive tree (Olea europaea L.) leaf as a waste by-product of table olive and olive oil industry: a review. J Sci Food Agric 98(4):1271–1279

    PubMed  Google Scholar 

  • Salta FN, Mylona A, Chiou A, Boskou G, Andrikopoulos NK (2007) Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Sci Technol Int 13(6):413–421

    CAS  Google Scholar 

  • Salvador MD, Aranda F, Gómez-Alonso S, Fregapane G (2003) Influence of extraction system production year and area on Cornicabra virgin olive oil: a study of five crop seasons. Food Chem 80(3):359–366. https://doi.org/10.1016/S0308-8146(02)00273-X

    Article  CAS  Google Scholar 

  • Sánchez de Medina V, Priego-Capote F, Jiménez-Ot C, Luque de Castro MD (2011) Quality and stability of edible oils enriched with hydrophilic antioxidants from the olive tree: the role of enrichment extracts and lipid composition. J Agric Food Chem 59(21):11432–11441

    PubMed  Google Scholar 

  • Schwingshackl L, Hoffmann G (2015) Adherence to Mediterranean diet and risk of cancer: an updated systematic review and meta-analysis of observational studies. Cancer Med 4(12):1933–1947

    PubMed  PubMed Central  Google Scholar 

  • Segade M, Bermejo R, Silva A, Paiva-Martins F, Gil-Longo J, Campos-Toimil M (2016) Involvement of endothelium in the vasorelaxant effects of 3, 4-DHPEA-EA and 3, 4-DHPEA-EDA, two major functional bioactives in olive oil. J Funct Foods 23:637–646

    CAS  Google Scholar 

  • Servili M, Montedoro G (2002) Contribution of phenolic compounds to virgin olive oil quality. Eur J Lipid Sci Technol 104(9–10):602–613

    CAS  Google Scholar 

  • Servili M, Baldioli M, Miniati E, Montedoro GF (1996) Antioxidant activity of new phenolic compounds extracted from virgin olive oil and their interaction with α-tocopherol and β-carotene. Riv Ital delle Sostanze Grasse 73(2):55–59

    CAS  Google Scholar 

  • Shalaby AR, Anwar MM, Sallam EM (2018) Improving quality and shelf-life of minced beef using irradiated olive leaf extract. J Food Process Preserv 42(11):e13789

    Google Scholar 

  • Silva L, Pinto J, Carrola J, Paiva-Martins F (2010a) Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chem 121(4):1177–1187

    CAS  Google Scholar 

  • Silva L, Garcia B, Paiva-Martins F (2010b) Oxidative stability of olive oil and its polyphenolic compounds after boiling vegetable process. LWT – Food Sci Technol 43(9):1336–1344

    CAS  Google Scholar 

  • Silva SF, Anjos CAR, Cavalcanti RN, dos Santos CRM (2015) Evaluation of extra virgin olive oil stability by artificial neural network. Food Chem 179:35–43

    CAS  PubMed  Google Scholar 

  • Sioriki E, Smith TK, Demopoulos CA, Zabetakis I (2016) Structure and cardioprotective activities of polar lipids of olive pomace, olive pomace-enriched fish feed and olive pomace fed gilthead sea bream (Sparus aurata). Food Res Int 83:143–151

    CAS  Google Scholar 

  • Suárez M, Romero M-P, Motilva M-J (2010) Development of a phenol-enriched olive oil with phenolic compounds from olive cake. J Agric Food Chem 58(19):10396–10403

    PubMed  Google Scholar 

  • Talhaoui N, Taamalli A, Gómez-Caravaca AM, Fernández-Gutiérrez A, Segura-Carretero A (2015) Phenolic compounds in olive leaves: analytical determination, biotic and abiotic influence, and health benefits. Food Res Int 77:92–108

    CAS  Google Scholar 

  • Tavakoli H, Hosseini O, Jafari SM, Katouzian I (2018 Sep 5) Evaluation of physicochemical and antioxidant properties of yogurt enriched by olive leaf Phenolics within Nanoliposomes. J Agric Food Chem 66(35):9231–9240

    CAS  PubMed  Google Scholar 

  • Terramoccia S, Bartocci S, Taticchi A, Di Giovanni S, Pauselli M, Mourvaki E et al (2013) Use of dried stoned olive pomace in the feeding of lactating buffaloes: effect on the quantity and quality of the Milk produced. Asian-Australas J Anim Sci 26(7):971–980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tunstall-Pedoe H, Kuulasmaa K, Mähönen M, Tolonen H, Ruokokoski E (1999) Contribution of trends in survival and coronar y-event rates to changes in coronary heart disease mortality: 10-year results from 37 WHO MONICA project populations. Lancet 353(9164):1547–1557

    CAS  PubMed  Google Scholar 

  • Woollard DC, Indyk HE (2003) TOCOPHEROLS, properties and determination. In: Caballero BBT-E of FS and N, 2nd edn. Academic Press, Oxford, pp 5789–5796

    Google Scholar 

  • Ying D, Hlaing MM, Lerisson J, Pitts K, Cheng L, Sanguansri L et al (2017) Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace. Food Res Int 100:665–673

    CAS  PubMed  Google Scholar 

  • Zilio DM, Bartocci S, Di Giovanni S, Servili M, Chiariotti A, Terramoccia S (2015) Evaluation of dried stoned olive pomace as supplementation for lactating Holstein cattle: effect on milk production and quality. Anim Prod Sci 55(2):185–188

    CAS  Google Scholar 

  • Zribi A, Gargouri B, Jabeur H, Rebaï A, Abdelhedi R, Bouaziz M (2013) Enrichment of pan-frying refined oils with olive leaf phenolic-rich extract to extend the usage life. Eur J Lipid Sci Technol 115(12):1443–1453

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by FCT/MCTES (UIDB/QUI/50006/2020 and PHENOLIVA–PTDC/OCE-ETA/32492/2017–POCI-01-0145-FEDER-032492).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Paiva-Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, M., Paiva-Martins, F. (2022). Olive Oil Phenolic Compounds as Antioxidants in Functional Foods: Description, Sources and Stability. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_19

Download citation

Publish with us

Policies and ethics