Skip to main content

Photosensitized Lipid Oxidation: Mechanisms and Consequences to Health Sciences

  • Chapter
  • First Online:
Lipid Oxidation in Food and Biological Systems

Abstract

Photoinduced lipid oxidation starts with light absorption by photosensitizers, forming excited states that oxidize lipids by two different mechanisms. The first mechanism involves energy transfer to molecular oxygen, forming singlet oxygen (Type II). Singlet oxygen reacts with unsaturated lipids, yielding lipid hydroperoxides. Alternatively, excited photosensitizers directly react with lipids (e.g., through hydrogen abstraction), forming lipid radicals that trigger classic lipid peroxidation pathways (Type I). While the former mechanism exclusively generates lipid hydroperoxides, the latter yields a variety of oxidized lipids including truncated lipid aldehydes. Although all types of oxidized lipids affect the biophysical properties of lipid membranes (e.g., phase-separation dynamics), so far only truncated lipid aldehydes have been implicated in membrane permeabilization, a transformation that is largely responsible for the phototoxic effects of photoinduced lipid oxidation in the biological context. In this chapter, we highlight two biological scenarios in which photooxidations are relevant: (1) exposure of the skin to sunlight and (2) photodynamic therapy, a clinical modality in which the detrimental effects of light on biological tissues are harnessed to treat cancer or infections. Through these examples, we discuss what are the main biological structures affected by lipid photooxidation and present key strategies to control the effects of light on cells and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afaq F, Adhami VM, Mukhtar H (2005, Apr 1) Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res Mol Mech Mutagen [Internet] 571(1–2):153–173. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0027510704004920

  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. Am Cancer Soc 61:250–281

    Google Scholar 

  • Alberti MN, Orfanopoulos M (2010, Aug 16) Unraveling the mechanism of the singlet oxygen Ene reaction: recent computational and experimental approaches. Chem – A Eur J [Internet]. 16(31):9414–9421. Available from: http://doi.wiley.com/10.1002/chem.201000752

  • Anthonymuthu TS, Kim-Campbell N, Bayır H (2017, Aug) Oxidative lipidomics. Curr Opin Crit Care [Internet] 23(4):251–256. Available from: http://journals.lww.com/00075198-201708000-00002

  • Bacellar IOL, Pavani C, Sales EM, Itri R, Wainwright M, Baptista MS (2014) Membrane damage efficiency of phenothiazinium photosensitizers. Photochem Photobiol 90(4):801–813

    CAS  PubMed  Google Scholar 

  • Bacellar IOL, Tsubone TM, Pavani C, Baptista MS (2015, Aug 31) Photodynamic efficiency: from molecular photochemistry to cell death. Int J Mol Sci [Internet]. 16(9):20523–20559. Available from: http://www.mdpi.com/1422-0067/16/9/20523/

  • Bacellar IOL, Oliveira MC, Dantas LS, Costa EB, Junqueira HC, Martins WK, et al. (2018, Aug 10) Photosensitized membrane Permeabilization requires contact-dependent reactions between photosensitizer and lipids. J Am Chem Soc [Internet].. 140(30):9606–9615. Available from: http://pubs.acs.org/doi/10.1021/jacs.8b05014

  • Bacellar IOL, Cordeiro RM, Mahling P, Baptista MS, Röder B, Hackbarth S (2019) Oxygen distribution in the fluid/gel phases of lipid membranes. Biochim Biophys Acta – Biomembr 1861(4):879–886

    Article  CAS  Google Scholar 

  • Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, et al. (2017, Jul) Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol [Internet]. 93(4):912–919. Available from: http://doi.wiley.com/10.1111/php.12716

  • Barrera G, Pizzimenti S, Dianzani MU (2004, Sep) 4-hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radic Biol Med [Internet]. 37(5):597–606. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584904004277

  • Baumgart T, Hammond AT, Sengupta P, Hess ST, Holowka DA, Baird BA, et al. (2007, Feb 27) Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proc Natl Acad Sci [Internet] 104(9):3165–3170. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0611357104

  • Biniek K, Levi K, Dauskardt RH (2012, Oct 16) Solar UV radiation reduces the barrier function of human skin. Proc Natl Acad Sci [Internet]. 109(42):17111–17116. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1206851109

  • Black HS, Rauschkolb EW (1971, May)) Effects of light on skin lipid metabolism. J Invest Dermatol [Internet]. 56(5):387–391. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15479977

  • Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV (2016, Dec) Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0891584916311352

  • Boonnoy P, Jarerattanachat V, Karttunen M, Wong-ekkabut J (2015, Dec 17) Bilayer deformation, pores, and Micellation induced by oxidized lipids. J Phys Chem Lett [Internet]. 6(24):4884–4888. Available from: http://pubs.acs.org/doi/10.1021/acs.jpclett.5b02405

  • Braslavsky SE (2007) Glossary of terms used in photochemistry. Pure Appl Chem 79:293–465

    Article  CAS  Google Scholar 

  • Cardoso DR, Olsen K, Møller JKS, Skibsted LH (2006, Jul) Phenol and terpene quenching of singlet- and triplet-excited states of riboflavin in relation to light-struck flavor formation in beer. J Agric Food Chem [Internet]. 54(15):5630–5636. Available from: https://pubs.acs.org/doi/10.1021/jf060750d

  • Cardoso DR, Libardi SH, Skibsted LH (2012) Riboflavin as a photosensitizer. Effects on human health and food quality. Food Funct [Internet]. 3(5):487. Available from: http://xlink.rsc.org/?DOI=c2fo10246c

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two – cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2(1):1–23

    Article  CAS  Google Scholar 

  • Catalá A (2009, Jan) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids [Internet]. 157(1):1–11. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0009308408003708

  • Corvalán NA, Caviglia AF, Felsztyna I, Itri R, Lascano R (2020, Aug 4) Lipid Hydroperoxidation effect on the dynamical evolution of the conductance process in bilayer lipid membranes: a condition toward criticality. Langmuir [Internet]. 36(30):8883–8893. Available from: https://pubs.acs.org/doi/10.1021/acs.langmuir.0c01243

  • Darvin ME, Gersonde I, Albrecht H, Sterry W, Lademann J (2006, May) In vivo Raman spectroscopic analysis of the influence of UV radiation on carotenoid antioxidant substance degradation of the human skin. Laser Phys [Internet]. 16(5):833–837. Available from: http://link.springer.com/10.1134/S1054660X06050148

  • de Almeida NEC, de Aguiar I, de Zawadzki A, Cardoso DR (2014, Dec 11) Kinetics and thermodynamics of 1-hydroxyethyl radical reaction with unsaturated lipids and Prenylflavonoids. J Phys Chem B [Internet]. 118(49):14278–14287. Available from: https://pubs.acs.org/doi/10.1021/jp509125b

  • de Assis LVM, Tonolli PN, Moraes MN, Baptista MS, de Lauro Castrucci AM (2021, Jun) How does the skin sense sun light? An integrative view of light sensing molecules. J Photochem Photobiol C Photochem Rev [Internet]. 47:100403. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1389556721000022

  • Rosa R De, Spinozzi F, Itri R (2018, Nov) Hydroperoxide and carboxyl groups preferential location in oxidized biomembranes experimentally determined by small angle X-ray scattering: implications in membrane structure. Biochim Biophys Acta – Biomembr [Internet]. 1860(11):2299–2307. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273618301536

  • Delgado-Andrade C (2016) Carboxymethyl-lysine: thirty years of investigation in the field of AGE formation. Food Funct [Internet]. 7(1):46–57. Available from: http://xlink.rsc.org/?DOI=C5FO00918A

  • Doleiden FH, Fahrenholtz SR, Lamola AA, Trozzolo AM (1974, Dec) Reactivity of cholesterol and some fatty acids TOWARD singlet oxygen. Photochem Photobiol [Internet]. 20(6):519–521. Available from: http://doi.wiley.com/10.1111/j.1751-1097.1974.tb06613.x

  • Ekanayake Mudiyanselage S, Hamburger M, Elsner P, Thiele JJ (2003, Jun) Ultraviolet a induces generation of squalene monohydroperoxide isomers in human sebum and skin surface lipids in vitro and in vivo. J Invest Dermatol [Internet]. 120(6):915–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12787115

  • Elias PM (1991, Jun) Epidermal barrier function: intercellular lamellar lipid structures, origin, composition and metabolism. J Control Release [Internet]. 15(3):199–208. Available from: https://linkinghub.elsevier.com/retrieve/pii/016836599190111P

  • Elias PM, Menon GK (1991) Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv Lipid Res 24:1–26. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780120249244500055

  • Foote CS (1968) Mechanisms of photosensitized oxidation. Science (80-) [Internet]. 162(3857):963–70. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.162.3857.963

  • Frankel EN (1984) Chemistry of free radical and singlet oxidation of lipids. Prog Lipid Res 23(4):197–221

    Article  CAS  Google Scholar 

  • Garcez AS, Núñez SC, Baptista MS, Daghastanli NA, Itri R, Hamblin MR, et al. (2011) Antimicrobial mechanisms behind photodynamic effect in the presence of hydrogen peroxide. Photochem Photobiol Sci [Internet]. 10(4):483–490. Available from: http://xlink.rsc.org/?DOI=C0PP00082E

  • Gardner HW (1989, Jan) Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med [Internet]. 7(1):65–86. Available from: http://linkinghub.elsevier.com/retrieve/pii/0891584989901020

  • Garrec J, Monari A, Assfeld X, Mir LM, Tarek M (2014, May 15) Lipid peroxidation in membranes: the peroxyl radical does not “float.” J Phys Chem Lett [Internet]. 5(10):1653–1658. Available from: http://pubs.acs.org/doi/abs/10.1021/jz500502q

  • Girotti AW (1992, Apr) New trends in photobiology. J Photochem Photobiol B Biol [Internet]. 13(2):105–118. Available from: https://linkinghub.elsevier.com/retrieve/pii/1011134492850505

  • Girotti AW (2001) Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B Biol 63(1–3):103–113

    Article  CAS  Google Scholar 

  • Girotti AW (2008, Mar) Translocation as a means of disseminating lipid hydroperoxide-induced oxidative damage and effector action. Free Radic Biol Med [Internet]. 44(6):956–968. Available from: https://linkinghub.elsevier.com/retrieve/pii/S089158490700809X

  • Gkogkolou P, Böhm M (2012, Jul 27) Advanced glycation end products. Dermatoendocrinol [Internet]. 4(3):259–270. Available from: http://www.tandfonline.com/doi/abs/10.4161/derm.22028

  • Gollnick K, Franken T, Schade G, Dörhöfer G (1970, Oct) Photosensitized oxygenation as a function of the triplet energy of sensitizers. Ann N Y Acad Sci [Internet]. 171(1 International):89–107. Available from: http://doi.wiley.com/10.1111/j.1749-6632.1970.tb39307.x

  • Gruber F, Bicker W, Oskolkova OV, Tschachler E, Bochkov VN (2012, Jun 1) A simplified procedure for semi-targeted lipidomic analysis of oxidized phosphatidylcholines induced by UVA irradiation. J Lipid Res [Internet]. 53(6):1232–42. Available from: http://www.jlr.org/cgi/doi/10.1194/jlr.D025270

  • Gruber F, Kremslehner C, Narzt M-S (2019, Nov) The impact of recent advances in lipidomics and redox lipidomics on dermatological research. Free Radic Biol Med [Internet]. 144:256–265. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584919301595

  • Hackbarth S, Röder B (2015) Singlet oxygen luminescence kinetics in a heterogeneous environment – identification of the photosensitizer localization in small unilamellar vesicles. Photochem Photobiol Sci [Internet]. 14(2):329–334. Available from: http://xlink.rsc.org/?DOI=C4PP00229F

  • Hackbarth S, Bornhütter T, Röder B (2016) Chapter 26. Singlet oxygen in heterogeneous systems. In: Singlet oxygen: applications in biosciences and nanosciences [Internet]. RSC, London, pp 27–42. Available from: http://ebook.rsc.org/?DOI=10.1039/9781782626992-00027

    Chapter  Google Scholar 

  • Halliwell B, Gutteridge JMC (2015) Free radicals in biology and medicine, 5th edn. Oxford University Press, Oxford

    Book  Google Scholar 

  • Haluska CK, Baptista MS, Fernandes AU, Schroder AP, Marques CM, Itri R (2012) Photo-activated phase separation in giant vesicles made from different lipid mixtures. Biochim Biophys Acta Biomembr 1818(3):666–672

    Article  CAS  Google Scholar 

  • Haratake A, Uchida Y, Mimura K, Elias PM, Holleran WM (1997a, Mar) Intrinsically aged epidermis displays diminished UVB-induced alterations in barrier function associated with decreased proliferation. J Invest Dermatol [Internet]. 108(3):319–323. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15428325

  • Haratake A, Uchida Y, Schmuth M, Tanno O, Yasuda R, Epstein JH, et al. (1997b, May) UVB-induced alterations in permeability barrier function: roles for epidermal Hyperproliferation and Thymocyte-mediated response. J Invest Dermatol [Internet]. 108(5):769–775. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15530224

  • Harding CR (2004, Jan) The stratum corneum: structure and function in health and disease. Dermatol Ther [Internet] 17(s1):6–15. Available from: http://doi.wiley.com/10.1111/j.1396-0296.2004.04S1001.x

  • Hill S, Lamberson CR, Xu L, To R, Tsui HS, Shmanai VV, et al (2012, Aug) Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation. Free Radic Biol Med [Internet]. 53(4):893–906. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584912003395

  • Holick MF (2004, Dec 1) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr [Internet] 80(6):1678S–1688S. Available from: https://academic.oup.com/ajcn/article/80/6/1678S/4690512

  • Holleran WM, Uchida Y, Halkier-Sorensen L, Haratake A, Hara M, Epstein JH, et al. (1997, Aug) Structural and biochemical basis for the UVB-induced alterations in epidermal barrier function. Photodermatol Photoimmunol Photomed [Internet]. 13(4):117–128. Available from: http://doi.wiley.com/10.1111/j.1600-0781.1997.tb00214.x

  • Howard JA, Ingold KU (1968, Feb) Self-reaction of sec-butylperoxy radicals. Confirmation of the Russell mechanism. J Am Chem Soc [Internet]. 90(4):1056–8. Available from: http://pubs.acs.org/doi/abs/10.1021/ja01006a037

  • Hu C, Wang M, Han X (2017, Aug) Shotgun lipidomics in substantiating lipid peroxidation in redox biology: methods and applications. Redox Biol [Internet]. 12:946–955. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2213231717302227

  • Huvaere K, Cardoso DR, Homem-De-Mello P, Westermann S, Skibsted LH (2010) Light-induced oxidation of unsaturated lipids as sensitized by flavins. J Phys Chem B 114(16):5583–5593

    Article  CAS  Google Scholar 

  • Jovanovic SV, Steenken S, Hara Y, Simic MG (1996) Reduction potentials of flavonoid and model phenoxyl radicals. Which ring in flavonoids is responsible for antioxidant activity? J Chem Soc Perkin Trans [Internet]. 2(11):2497–2504. Available from: http://xlink.rsc.org/?DOI=p29960002497

  • Junqueira HC, Severino D, Dias LG, Gugliotti MS, Baptista MS (2002) Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys Chem Chem Phys 4(11):2320–2328

    Article  CAS  Google Scholar 

  • Kalinich JF, Ramakrishnan R, McClain DE, Ramakrishnan N (2000, Jan 7) 4-Hydroxynonenal, an end-product of lipid peroxidation, induces apoptosis in human leukemic T- and B-cell lines. Free Radic Res [Internet]. 33(4):349–358. Available from: http://www.tandfonline.com/doi/full/10.1080/10715760000300891

  • Khandelia H, Loubet B, Olżyńska A, Jurkiewicz P, Hof M (2014) Pairing of cholesterol with oxidized phospholipid species in lipid bilayers. Soft Matter [Internet] 10(4):639–647. Available from: http://xlink.rsc.org/?DOI=C3SM52310A

    Article  CAS  Google Scholar 

  • Kohno Y, Egawa Y, Itoh S, Nagaoka S, Takahashi M, Mukai K (1995, Apr) Kinetic study of quenching reaction of singlet oxygen and scavenging reaction of free radical by squalene in n-butanol. Biochim Biophys Acta – Lipids Lipid Metab [Internet]. 1256(1):52–56. Available from: https://linkinghub.elsevier.com/retrieve/pii/000527609500005W

  • Krasnovsky AA, Kagan VE, Minin AA (1983, May 8) Quenching of singlet oxygen luminescence by fatty acids and lipids. FEBS Lett [Internet]. 155(2):233–236. Available from: http://doi.wiley.com/10.1016/0014-5793%2882%2980610-8

  • Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T (2017, Mar) The skin aging exposome. J Dermatol Sci [Internet] 85(3):152–161. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923181116308167

  • Lasch J, Schönfelder U, Walke M, Zellmer S, Beckert D (1997, Nov) Oxidative damage of human skin lipids. Biochim Biophys Acta – Lipids Lipid Metab [Internet]. 1349(2):171–181. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005276097000933

  • Latreille J, Kesse-Guyot E, Malvy D, Andreeva V, Galan P, Tschachler E, et al (2012, Sep 6) Dietary monounsaturated fatty acids intake and risk of skin photoaging. Soyer HP, editor. PLoS One [Internet]. 7(9):e44490. Available from: https://dx.plos.org/10.1371/journal.pone.0044490

  • Lehmann P, Hölzle E, Melnik B, Plewig G (1991, Jun) Effects of ultraviolet A and B on the skin barrier: a functional, electron microscopic and lipid biochemical study. Photodermatol Photoimmunol Photomed [Internet]. 8(3):129–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1804292

  • Leonarduzzi G, Arkan MC, Başağa H, Chiarpotto E, Sevanian A, Poli G (2000, May) Lipid oxidation products in cell signaling. Free Radic Biol Med [Internet]. 28(9):1370–1378. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0891584900002161

  • Libardo MDJ, Wang T-Y, Pellois J-P, Angeles-Boza AM (2017, Aug) How does membrane oxidation affect cell delivery and cell killing? Trends Biotechnol [Internet]. 35(8):686–690. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167779917300641

  • Lingwood D, Simons K (2010, Jan 1) Lipid rafts as a membrane-organizing principle. Science (80-) [Internet]. 327(5961):46–50. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1174621

  • Lippman RD (1985, Jan) Rapid in vivo quantification and comparison of hydroperoxides and oxidized collagen in aging mice, rabbits and man. Exp Gerontol [Internet]. 20(1):1–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/0531556585900038

  • Lohan S, Lauer A-C, Arndt S, Friedrich A, Tscherch K, Haag S, et al. (2015, Aug 19) Determination of the antioxidant status of the skin by in vivo-electron paramagnetic resonance (EPR) spectroscopy. Cosmetics [Internet]. 2(3):286–301. Available from: http://www.mdpi.com/2079-9284/2/3/286

  • Lohan SB, Müller R, Albrecht S, Mink K, Tscherch K, Ismaeel F, et al. (2016, May) Free radicals induced by sunlight in different spectral regions – in vivo versus ex vivo study. Exp Dermatol [Internet]. 25(5):380–385. Available from: http://doi.wiley.com/10.1111/exd.12987

  • Madison KC, Swartzendruber DC, Wertz PW, Downing DT (1987, Jun) Presence of intact intercellular lipid lamellae in the upper layers of the stratum Corneum. J Invest Dermatol [Internet]. 88(6):714–718. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X87902648

  • Martins WK, Gomide AB, Costa ÉT, Junqueira HC, Stolf BS, Itri R, et al. (2017, Jan) Membrane damage by betulinic acid provides insights into cellular aging. Biochim Biophys Acta – Gen Subj [Internet]. 1861(1):3129–3143. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304416516303932

  • Martins WK, Santos NF, Rocha CDS, IOL B, Tsubone TM, Viotto AC et al (2018) Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy 15:259–279. https://doi.org/10.1080/15548627.2018

    Article  PubMed  PubMed Central  Google Scholar 

  • McQuaid R, Mrochen M, Vohnsen B (2016, Mar) Rate of riboflavin diffusion from intrastromal channels before corneal crosslinking. J Cataract Refract Surg [Internet]. 42(3):462–468. Available from: https://journals.lww.com/02158034-201603000-00016

  • Meinke MC, Müller R, Bechtel A, Haag SF, Darvin ME, Lohan SB, et al. (2015, Mar) Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations. Exp Dermatol [Internet]. 24(3):194–197. Available from: http://doi.wiley.com/10.1111/exd.12605

  • Neff WE, Frankel EN, Weisleder D (1982, Nov) Photosensitized oxidation of methyl linolenate. Secondary products. Lipids [Internet]. 17(11):780–90. Available from: http://link.springer.com/10.1007/BF02535354

  • Neff WE, Frankel EN (1984, Dec) Photosensitized oxidation of methyl linolenate monohydroperoxides: Hydroperoxy cyclic peroxides, dihydroperoxides and hydroperoxy bis-cyclic peroxides. Lipids [Internet] 19(12):952–957. Available from: http://link.springer.com/10.1007/BF02534731

  • Nicolson GL, Ash ME (2014, Jun) Lipid replacement therapy: a natural medicine approach to replacing damaged lipids in cellular membranes and organelles and restoring function. Biochim Biophys Acta – Biomembr [Internet] 1838(6):1657–1679. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273613004070

  • Niki E (2015, Jul 3) Lipid oxidation in the skin. Free Radic Res [Internet]. 49(7):827–834. Available from: http://www.tandfonline.com/doi/full/10.3109/10715762.2014.976213

  • Niziolek M, Korytowski W, Girotti AW (2007, Apr 30) Self-sensitized Photodegradation of membrane-bound Protoporphyrin mediated by chain lipid peroxidation: inhibition by nitric oxide with sustained singlet oxygen damage. Photochem Photobiol [Internet]. 81(2):299–305. Available from: http://doi.wiley.com/10.1111/j.1751-1097.2005.tb00187.x

  • Oliveira CS, Turchiello R, Kowaltowski AJ, Indig GL, Baptista MS (2011) Major determinants of photoinduced cell death: subcellular localization versus photosensitization efficiency. Free Radic Biol Med [Internet]. 51(4):824–833. Available from: https://doi.org/10.1016/j.freeradbiomed.2011.05.023

  • Pavani C, Uchoa AF, Oliveira CS, Iamamoto Y, Baptista MS (2009) Effect of zinc insertion and hydrophobicity on the membrane interactions and PDT activity of porphyrin photosensitizers. Photochem Photobiol Sci [Internet]. 8(2):233–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19247516

  • Podda M, Grundmann-Kollmann M (2001, Oct) Low molecular weight antioxidants and their role in skin ageing. Clin Exp Dermatol [Internet]. 26(7):578–582. Available from: http://doi.wiley.com/10.1046/j.1365-2230.2001.00902.x

  • Quina FH, Silva GTM (2021, Sep) The photophysics of photosensitization: A brief overview. J Photochem Photobiol [Internet]. 7:100042. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2666469021000270

  • Rauschkolb EW, Farrell G, Knox JM (1967, Dec) Effects of ultraviolet light on skin cholesterol. J Invest Dermatol [Internet]. 49(6):632–636. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15474299

  • Reis A (2017, Jan) Oxidative Phospholipidomics in health and disease: Achievements, challenges and hopes. Free Radic Biol Med [Internet]. Available from: http://linkinghub.elsevier.com/retrieve/pii/S089158491730014X

  • Rems L, Viano M, Kasimova MA, Miklavčič D, Tarek M (2019, Feb) The contribution of lipid peroxidation to membrane permeability in electropermeabilization: a molecular dynamics study. Bioelectrochemistry [Internet]. 125:46–57. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1567539418300938

  • Riske KA, Sudbrack TP, Archilha NL, Uchoa AF, Schroder AP, Marques CM et al (2009) Giant vesicles under oxidative stress induced by a membrane-anchored photosensitizer. Biophys J 97(5):1362–1370

    Article  CAS  Google Scholar 

  • Runas KA, Malmstadt N (2015) Low levels of lipid oxidation radically increase the passive permeability of lipid bilayers. Soft Matter [Internet]. 11(3):499–505. Available from: http://xlink.rsc.org/?DOI=C4SM01478B

  • Runas KA, Acharya SJ, Schmidt JJ, Malmstadt N (2016, Jan 26) Addition of cleaved tail fragments during lipid oxidation stabilizes membrane permeability behavior. Langmuir [Internet] 32(3):779–786. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.5b02980

  • Russell GA (1957, Jul) Deuterium-isotope Effects in the Autoxidation of Aralkyl Hydrocarbons. Mechanism of the Interaction of Peroxy Radicals. J Am Chem Soc [Internet]. 79(14):3871–7. Available from: http://pubs.acs.org/doi/abs/10.1021/ja01571a068

  • Sankhagowit S, Wu SH, Biswas R, Riche CT, Povinelli ML, Malmstadt N (2014) The dynamics of giant unilamellar vesicle oxidation probed by morphological transitions. Biochim Biophys Acta Biomembr 1838(10):2615–2624

    Article  CAS  Google Scholar 

  • Sarici G, Cinar S, Armutcu F, Altınyazar C, Koca R, Tekin N (2009, Nov 23) Oxidative stress in acne vulgaris. J Eur Acad Dermatology Venereol [Internet] 24(7):763–767. Available from: http://doi.wiley.com/10.1111/j.1468-3083.2009.03505.x

  • Schalka S, Silva MS, Lopes LF, Freitas LM, Baptista MS (2021) The skin redoxome. J Eur Acad Dermatology Venereol. https://doi.org/10.1111/jdv.17780

  • Schweitzer C, Schmidt R (2003) Physical mechanisms of generation and deactivation of singlet oxygen. Chem Rev 103(5):1685–1757

    Article  CAS  Google Scholar 

  • Scurachio RS, Mattiucci F, Santos WG, Skibsted LH, Cardoso DR (2016, Oct) Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health. J Photochem Photobiol B Biol [Internet]. 163:277–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1011134416301609

  • Seddon JM (2001, Aug 1) Dietary fat and risk for advanced age-related macular degeneration. Arch Ophthalmol [Internet]. 119(8):1191. Available from: http://archopht.jamanetwork.com/article.aspx?doi=10.1001/archopht.119.8.1191

  • Severino D, Junqueira HC, Gugliotti M, Gabrielli DS, Baptista MS (2003) Influence of negatively charged interfaces on the ground and excited state properties of methylene blue. Photochem Photobiol [Internet]. 77(5):459–468. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12812286%5Cnhttp://doi.wiley.com/10.1562/0031-8655(2003)0770459IONCIO2.0.CO2

  • Sezgin E, Levental I, Mayor S, Eggeling C (2017, Mar 30) The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol [Internet]. 18(6):361–374. Available from: http://www.nature.com/doifinder/10.1038/nrm.2017.16

  • Shimizu N, Ito J, Kato S, Eitsuka T, Saito T, Nishida H, et al. (2019, Dec 26) Evaluation of squalene oxidation mechanisms in human skin surface lipids and shark liver oil supplements. Ann N Y Acad Sci [Internet]. 1457(1):158–165. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/nyas.14219

  • Siani P, de Souza RM, Dias LG, Itri R, Khandelia H (2016, Oct) An overview of molecular dynamics simulations of oxidized lipid systems, with a comparison of ELBA and MARTINI force fields for coarse grained lipid simulations. Biochim Biophys Acta – Biomembr [Internet]. 1858(10):2498–2511. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0005273616301171

  • Silva AV, López-Sánchez A, Junqueira HC, Rivas L, Baptista MS, Orellana G (2015, Jan) Riboflavin derivatives for enhanced photodynamic activity against Leishmania parasites. Tetrahedron [Internet]. 71(3):457–462. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0040402014016767

  • Simons K, Ikonen E (1997, Jun 5) Functional rafts in cell membranes. Nature [Internet] 387(6633):569–572. Available from: http://www.nature.com/articles/42408

  • Smirnov VV, Egorenkov EA, Myasnikova TN, Petukhov AE, Gegechkori VI, Sukhanova AM, et al (2019) Lipidomic analysis as a tool for identifying susceptibility to various skin diseases. Medchemcomm [Internet]. 10(11):1871–4. Available from: http://xlink.rsc.org/?DOI=C9MD00364A

  • Song F, Qureshi AA, Han J (2012, Jul 1) Increased caffeine Intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Res [Internet]. 72(13):3282–3289. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-11-3511

  • Speeckaert R, Dugardin J, Lambert J, Lapeere H, Verhaeghe E, Speeckaert MM, et al. (2018, Jul) Critical appraisal of the oxidative stress pathway in vitiligo: a systematic review and meta-analysis. J Eur Acad Dermatology Venereol [Internet]. 32(7):1089–1098. Available from: http://doi.wiley.com/10.1111/jdv.14792

  • Stoyanovsky DA, Osipov AN, Quinn PJ, Kagan VE (1995, Nov) Ubiquinone-dependent recycling of vitamin E radicals by superoxide. Arch Biochem Biophys [Internet]. 323(2):343–351. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003986185799559

  • Szél E, Bozó R, Hunyadi-Gulyás É, Manczinger M, Szabó K, Kemény L, et al (2019, Dec 6) Comprehensive proteomic analysis reveals intermediate stage of non-lesional psoriatic skin and points out the importance of proteins outside this trend. Sci Rep [Internet]. 9(1):11382. Available from: http://www.nature.com/articles/s41598-019-47774-5

  • Tardivo JPP, Del Giglio A, Paschoal LHCHC, Ito ASS, Baptista MSS (2004, Dec) Treatment of melanoma lesions using methylene blue and RL50 light source. Photodiagnosis Photodyn Ther [Internet]. 1(4):345–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1572100005000050

  • Tardivo JP, Del Giglio A, de Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB, et al (2005, Sep) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther [Internet]. 2(3):175–91. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1572100005000979

  • Tardivo JP, Giglio A Del, Paschoal LH, Baptista MS (2006, Aug) New photodynamic therapy protocol to treat AIDS-related Kaposi’s sarcoma. Photomed Laser Surg [Internet]. 24(4):528–531. Available from: https://www.liebertpub.com/doi/10.1089/pho.2006.24.528

  • Tardivo JP, Wainwright M, Baptista M (2015a, Sep) Small scale trial of photodynamic treatment of onychomycosis in São Paulo. J Photochem Photobiol B Biol [Internet]. 150:66–68. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1011134415000925

  • Tardivo JP, Baptista MS, Correa JA, Adami F, Pinhal MAS (2015b, Aug 17) Development of the tardivo algorithm to predict amputation risk of diabetic foot. Santanelli, di Pompeo d’Illasi F, editor. PLoS One [Internet]. 10(8):e0135707. Available from: https://dx.plos.org/10.1371/journal.pone.0135707

  • Tasso TT, Schlothauer JC, Junqueira HC, Matias TA, Araki K, Liandra-Salvador É, et al. (2019, Oct 2) Photobleaching efficiency parallels the enhancement of membrane damage for Porphyrazine photosensitizers. J Am Chem Soc [Internet]. 141(39):15547–15556. Available from: http://pubs.acs.org/doi/10.1021/jacs.9b05991

  • Thiele JJ, Traber MG, Packer L (1998, May) Depletion of human stratum Corneum vitamin E: an early and sensitive in vivo marker of UV induced photo-oxidation. J Invest Dermatol [Internet]. 110(5):756–761. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X15400764

  • Tonolli PN, Chiarelli-Neto O, Santacruz-Perez C, Junqueira HC, Watanabe I-S, Ravagnani FG, et al. (2017, Nov) Lipofuscin generated by UVA turns keratinocytes photosensitive to visible light. J Invest Dermatol [Internet]. 137(11):2447–2450. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0022202X17318481

  • Tsubone TM, Baptista MS, Itri R (2019a, Nov) Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem [Internet]. 254:106263. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0301462219302753

  • Tsubone TM, Martins WK, Pavani C, Junqueira HC, Itri R, Baptista MS (2017, Dec 27) Enhanced efficiency of cell death by lysosome-specific photodamage. Sci Rep [Internet]. 7(1):6734. Available from: http://www.nature.com/articles/s41598-017-06788-7

  • Tsubone TM, Junqueira HC, Baptista MS, Itri R (2019b, Mar) Contrasting roles of oxidized lipids in modulating membrane microdomains. Biochim Biophys Acta – Biomembr [Internet]. 1861(3):660–669. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0005273618303730

  • Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS (2021, Jan) Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys [Internet]. 697:108665. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0003986120306743

  • Turro NJ, Ramamurthy V, Scaiano JC (2009) Principles of molecular photochemistry: an introduction, 1st edn. University Science Books, Sausalito

    Google Scholar 

  • Uchino T, Tokunaga H, Onodera H, Ando M (2002) Effect of squalene Monohydroperoxide on cytotoxicity and cytokine release in a three-dimensional human skin model and human epidermal keratinocytes. Biol Pharm Bull [Internet] 25(5):605–610. Available from: http://www.jstage.jst.go.jp/article/bpb/25/5/25_5_605/_article

  • Uchoa AF, Konopko AM, Baptista MS (2015) Chlorophyllin Derivatives as Photosensitizers: Synthesis and Photodynamic Properties. J Braz Chem Soc [Internet]. Available from: http://www.gnresearch.org/doi/10.5935/0103-5053.20150290

  • Vandersee S, Beyer M, Lademann J, Darvin ME (2015) Blue-violet light irradiation dose dependently decreases carotenoids in human skin, which indicates the generation of free radicals. Oxid Med Cell Longev [Internet]. 2015:1–7. Available from: http://www.hindawi.com/journals/omcl/2015/579675/

  • Vistoli G, De Maddis D, Cipak A, Zarkovic N, Carini M, Aldini G (2013, Aug 17) Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): an overview of their mechanisms of formation. Free Radic Res [Internet]. 47(Sup1):3–27. Available from: http://www.tandfonline.com/doi/full/10.3109/10715762.2013.815348

  • Volinsky R, Kinnunen PKJ (2013, Jun) Oxidized phosphatidylcholines in membrane-level cellular signaling: from biophysics to physiology and molecular pathology. FEBS J [Internet]. 280(12):2806–2816. Available from: http://doi.wiley.com/10.1111/febs.12247

  • Weber G, Charitat T, Baptista MS, Uchoa AF, Pavani C, Junqueira HC, et al. (2014) Lipid oxidation induces structural changes in biomimetic membranes. Soft Matter [Internet]. 10(24):4241–7. Available from.: http://www.ncbi.nlm.nih.gov/pubmed/24871383

  • Wei Y, Zhou Y-M, Li Y-Q, Gao R-Y, Fu L-M, Wang P, et al (2021, Aug) Spatial effects of photosensitization on morphology of giant unilamellar vesicles. Biophys Chem [Internet]. 275:106624. Available from: https://linkinghub.elsevier.com/retrieve/pii/S030146222100106X

  • Wilkinson F, Helman WP, Ross AB (1995) Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expand and revised compilation. J Phys Chem Ref Data 24(2):663–677

    Article  CAS  Google Scholar 

  • Wong-Ekkabut J, Xu Z, Triampo W, Tang I-M, Tieleman DP, Monticelli L (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys J 93(12):4225–4236

    Article  CAS  Google Scholar 

  • Yadav DK, Kumar S, Choi E-H, Chaudhary S, Kim M-H (2019 Dec 14) Molecular dynamic simulations of oxidized skin lipid bilayer and permeability of reactive oxygen species. Sci Rep [Internet]. 9(1):4496. Available from: http://www.nature.com/articles/s41598-019-40913-y

  • Yamawaki Y, Mizutani T, Okano Y, Masaki H (2019 Feb) The impact of carbonylated proteins on the skin and potential agents to block their effects. Exp Dermatol [Internet]. 28:32–7. Available from: http://doi.wiley.com/10.1111/exd.13821

  • Yin H, Xu L, Porter NA (2011, Oct 12) Free radical lipid peroxidation: mechanisms and analysis. Chem Rev [Internet]. 111(10):5944–5972. Available from: http://pubs.acs.org/doi/abs/10.1021/cr200084z

  • Ytzhak S, Ehrenberg B (2014) The effect of photodynamic action on leakage of ions through liposomal membranes that contain oxidatively modified lipids. Photochem Photobiol 90(4):796–800

    CAS  PubMed  Google Scholar 

  • Yusupov M, Van der Paal J, Neyts EC, Bogaerts A (2017, Apr) Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochim Biophys Acta – Gen Subj [Internet]. 1861(4):839–847. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416517300387

  • Zhou Y-M, Zhang Y, Gao R-Y, Liu W, Wei Y, Han R-M, et al (2021, Sep) Primary reaction intermediates of Type-I photosensitized lipid oxidation as revealed by time-resolved optical spectroscopies. J Photochem Photobiol A Chem [Internet]. 418:113376. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1010603021002483

Download references

Acknowledgments

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) is acknowledged for financial support (CEPID-REDOXOMA 2013/07937-8 and grant 2017/01189-0). Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is acknowledged for financial support (grant 309212/2019-7) and for research fellowships (D.R.C., M.S.B., and R.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio S. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bacellar, I.O.L., Itri, R., Rodrigues, D.R., Baptista, M.S. (2022). Photosensitized Lipid Oxidation: Mechanisms and Consequences to Health Sciences. In: Bravo-Diaz, C. (eds) Lipid Oxidation in Food and Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-87222-9_14

Download citation

Publish with us

Policies and ethics