Skip to main content

SurgeonAssist-Net: Towards Context-Aware Head-Mounted Display-Based Augmented Reality for Surgical Guidance

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12904))

Abstract

We present SurgeonAssist-Net: a lightweight framework making action-and-workflow-driven virtual assistance, for a set of predefined surgical tasks, accessible to commercially available optical see-through head-mounted displays (OST-HMDs). On a widely used benchmark dataset for laparoscopic surgical workflow, our implementation competes with state-of-the-art approaches in prediction accuracy for automated task recognition, and yet requires \(7.4\times \) fewer parameters, \(10.2\times \) fewer floating point operations per second (FLOPS), is \(7.0\times \) faster for inference on a CPU, and is capable of near real-time performance on the Microsoft HoloLens 2 OST-HMD. To achieve this, we make use of an efficient convolutional neural network (CNN) backbone to extract discriminative features from image data, and a low-parameter recurrent neural network (RNN) architecture to learn long-term temporal dependencies. To demonstrate the feasibility of our approach for inference on the HoloLens 2 we created a sample dataset that included video of several surgical tasks recorded from a user-centric point-of-view. After training, we deployed our model and cataloged its performance in an online simulated surgical scenario for the prediction of the current surgical task. The utility of our approach is explored in the discussion of several relevant clinical use-cases. Our code is publicly available at https://github.com/doughtmw/surgeon-assist-net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peters, T.M.: Image-guidance for surgical procedures. Phys. Med. Biol. 51(14), R505 (2006)

    Article  Google Scholar 

  2. Liu, D., Jenkins, S.A., Sanderson, P.M., Fabian, P., Russell, W.J.: Monitoring with head-mounted displays in general anesthesia: a clinical evaluation in the operating room. Anesth. Analg. 110(4), 1032–1038 (2010)

    Article  Google Scholar 

  3. Bernhardt, S., Nicolau, S.A., Soler, L., Doignon, C.: The status of augmented reality in laparoscopic surgery as of 2016. Med. Image Anal. 37, 66–90 (2017)

    Article  Google Scholar 

  4. Zorzal, E.R., et al.: Laparoscopy with augmented reality adaptations. J. Biomed. Inform. 107, 103463 (2020)

    Google Scholar 

  5. Meola, A., Cutolo, F., Carbone, M., Cagnazzo, F., Ferrari, M., Ferrari, V.: Augmented reality in neurosurgery: a systematic review. Neurosurg. Rev. 40(4), 537–548 (2016). https://doi.org/10.1007/s10143-016-0732-9

    Article  Google Scholar 

  6. Jud, L., et al.: Applicability of augmented reality in orthopedic surgery-a systematic review. BMC Musculoskelet. Disord. 21(1), 1–13 (2020)

    Article  Google Scholar 

  7. Rahman, R., Wood, M.E., Qian, L., Price, C.L., Johnson, A.A., Osgood, G.M.: Head-mounted display use in surgery: a systematic review. Surg. Innov. 27(1), 88–100 (2020)

    Article  Google Scholar 

  8. Dixon, B.J., Daly, M.J., Chan, H., Vescan, A.D., Witterick, I.J., Irish, J.C.: Surgeons blinded by enhanced navigation: the effect of augmented reality on attention. Surg. Endosc. 27(2), 454–461 (2013)

    Article  Google Scholar 

  9. Grubert, J., Itoh, Y., Moser, K., Swan, J.E.: A survey of calibration methods for optical see-through head-mounted displays. IEEE Trans. Visual Comput. Graphics 24(9), 2649–2662 (2017)

    Article  Google Scholar 

  10. Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imaging Graph. 37(2), 98–112 (2013)

    Article  Google Scholar 

  11. Hong, J., et al.: Three-dimensional display technologies of recent interest: principles, status, and issues [invited]. Appl. Opt. 50(34), H87–H115 (2011)

    Article  Google Scholar 

  12. Cleary, K., Peters, T.M.: Image-guided interventions: technology review and clinical applications. Annu. Rev. Biomed. Eng. 12, 119–142 (2010)

    Article  Google Scholar 

  13. Eckert, M., Volmerg, J.S., Friedrich, C.M.: Augmented reality in medicine: systematic and bibliographic review. JMIR mHealth uHealth 7(4), e10967 (2019)

    Google Scholar 

  14. Twinanda, A.P., Shehata, S., Mutter, D., Marescaux, J., De Mathelin, M., Padoy, N.: Endonet: a deep architecture for recognition tasks on laparoscopic videos. IEEE Trans. Med. Imaging 36(1), 86–97 (2016)

    Article  Google Scholar 

  15. Suzuki, T., Sakurai, Y., Yoshimitsu, K., Nambu, K., Muragaki, Y., Iseki, H.: Intraoperative multichannel audio-visual information recording and automatic surgical phase and incident detection. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 1190–1193. IEEE (2010)

    Google Scholar 

  16. Forestier, G., et al.: Multi-site study of surgical practice in neurosurgery based on surgical process models. J. Biomed. Inform. 46(5), 822–829 (2013)

    Article  Google Scholar 

  17. Navab, N., Traub, J., Sielhorst, T., Feuerstein, M., Bichlmeier, C.: Action-and workflow-driven augmented reality for computer-aided medical procedures. IEEE Comput. Graphics Appl. 27(5), 10–14 (2007)

    Article  Google Scholar 

  18. Quellec, G., Lamard, M., Cochener, B., Cazuguel, G.: Real-time task recognition in cataract surgery videos using adaptive spatiotemporal polynomials. IEEE Trans. Med. Imaging 34(4), 877–887 (2014)

    Article  Google Scholar 

  19. Padoy, N., Blum, T., Ahmadi, S.A., Feussner, H., Berger, M.O., Navab, N.: Statistical modeling and recognition of surgical workflow. Med. Image Anal. 16(3), 632–641 (2012)

    Article  Google Scholar 

  20. Lea, C., Vidal, R., Hager, G.D.: Learning convolutional action primitives for fine-grained action recognition. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 1642–1649. IEEE (2016)

    Google Scholar 

  21. Katić, D., et al.: A system for context-aware intraoperative augmented reality in dental implant surgery. Int. J. Comput. Assist. Radiol. Surg. 10(1), 101–108 (2014). https://doi.org/10.1007/s11548-014-1005-0

    Article  Google Scholar 

  22. Jin, Y., et al.: SV-RCNet: workflow recognition from surgical videos using recurrent convolutional network. IEEE Trans. Med. Imaging 37(5), 1114–1126 (2017)

    Article  Google Scholar 

  23. Jin, Y., et al.: Multi-task recurrent convolutional network with correlation loss for surgical video analysis. Med. Image Anal. 59, 101572 (2020)

    Google Scholar 

  24. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  25. Liu, R.: Higher accuracy on vision models with efficientnet-lite. TensorFlow Blog (2020). https://blog.tensorflow.org/2020/03/higher-accuracy-on-visionmodels-with-efficientnet-lite.html. Accessed 30 Apr 2020

  26. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the properties of neural machine translation: encoder-decoder approaches. arXiv preprint arXiv:1409.1259 (2014)

  27. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  30. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  31. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  32. Bradski, G.: The opencv library. Dr. Dobb’s J. Softw. Tools 25, 120–125 (2000)

    Google Scholar 

  33. Bai, J., Lu, F., Zhang, K., et al.: ONNX: open neural network exchange (2019). https://github.com/onnx/onnx

  34. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)

  35. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery program (RGPIN-2019-06367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell Doughty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doughty, M., Singh, K., Ghugre, N.R. (2021). SurgeonAssist-Net: Towards Context-Aware Head-Mounted Display-Based Augmented Reality for Surgical Guidance. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics