Skip to main content

Automatic Path Planning for Safe Guide Pin Insertion in PCL Reconstruction Surgery

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Reconstruction surgery of torn ligaments typically requires precise and anatomically correct fixation of the graft substitute on the bone surface. Several planning methodologies have been proposed that aim at standardizing the interventional procedure by localizing drill sites or defining the drill tunnel orientation with the help of anatomical landmarks. However, the practical implementation is limited by the often complex and time-consuming nature of the planning steps. For this reason, we propose an automatic solution for safe guide pin path planning based on bone contour extraction, axis detection, anatomical landmark detection, and geometrical construction. We evaluate our approach for the task of double-bundle posterior cruciate ligament reconstruction surgery on the lateral tibia using 38 clinical X-ray images. Our method achieves a median path angulation error of \(0.37^{\circ }\) and a median localization error of 0.96 mm for the ligament attachment center.

The authors gratefully acknowledge funding of the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the Bavarian State Ministry for Science and Art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, C.J., Ziegler, C.G., Wijdicks, C.A., Engebretsen, L., LaPrade, R.F.: Arthroscopically pertinent anatomy of the anterolateral and posteromedial bundles of the posterior cruciate ligament. J. Bone Joint Surg. Am. 94(21), 1936–1945 (2012). https://doi.org/10.2106/JBJS.K.01710

    Article  Google Scholar 

  2. Bertollo, N., Walsh, W.R.: Drilling of bone: Practicality, limitations and complications associated with surgical drill-bits. In: Klika, V. (ed.) Biomechanics in Applications, Chap. 3. IntechOpen, Rijeka (2011). https://doi.org/10.5772/20931

  3. Caversaccio, M., et al.: Robotic cochlear implantation: surgical procedure and first clinical experience. Acta oto-laryngologica 137(4), 447–454 (2017). https://doi.org/10.1080/00016489.2017.1278573

    Article  Google Scholar 

  4. Chahla, J., Nitri, M., Civitarese, D., Dean, C.S., Moulton, S.G., LaPrade, R.F.: Anatomic double-bundle posterior cruciate ligament reconstruction. Arthroscopy Tech. 5(1), e149-56 (2016). https://doi.org/10.1016/j.eats.2015.10.014

    Article  Google Scholar 

  5. Ewerbeck, V., et al. (eds.): Standardverfahren in der operativen Orthopädie und Unfallchirurgie, 4th edn. Thieme, Stuttgart (2014)

    Google Scholar 

  6. Jackson, D.W., Proctor, C.S., Simon, T.M.: Arthroscopic assisted PCL reconstruction: a technical note on potential neurovascular injury related to drill bit configuration. Arthroscopy J. Arthroscopic Related Surg. 9(2), 224–227 (1993). https://doi.org/10.1016/s0749-8063(05)80381-0

    Article  Google Scholar 

  7. Johannsen, A.M., Anderson, C.J., Wijdicks, C.A., Engebretsen, L., LaPrade, R.F.: Radiographic landmarks for tunnel positioning in posterior cruciate ligament reconstructions. Am. J. Sports Med. 41(1), 35–42 (2013). https://doi.org/10.1177/0363546512465072

    Article  Google Scholar 

  8. Kordon, F., Maier, A., Swartman, B., Privalov, M., El Barbari, J.S., Kunze, H.: Contour-based bone axis detection for X-Ray guided surgery on the knee. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 671–680. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_65

    Chapter  Google Scholar 

  9. Kordon, F., et al.: Multi-task localization and segmentation for X-Ray guided planning in knee surgery. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 622–630. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_69

    Chapter  Google Scholar 

  10. LaPrade, R.F., et al.: Double-bundle posterior cruciate ligament reconstruction in 100 patients at a mean 3 years’ follow-up: outcomes were comparable to anterior cruciate ligament reconstructions. Am. J. Sports Med. 46(8), 1809–1818 (2018). https://doi.org/10.1177/0363546517750855

    Article  Google Scholar 

  11. Longo, U.G., et al.: Epidemiology of posterior cruciate ligament reconstructions in Italy: a 15-year study. J. Clin. Med. 10(3), 499 (2021). https://doi.org/10.3390/jcm10030499

    Article  Google Scholar 

  12. Montgomery, S.R., Johnson, J.S., McAllister, D.R., Petrigliano, F.A.: Surgical management of PCL injuries: indications, techniques, and outcomes. Curr. Rev. Musculoskelet. Med. 6(2), 115–123 (2013). https://doi.org/10.1007/s12178-013-9162-2

    Article  Google Scholar 

  13. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  14. Nicodeme, J.D., Löcherbach, C., Jolles, B.M.: Tibial tunnel placement in posterior cruciate ligament reconstruction: a systematic review. Knee Surg. Sports Traumatol. Arthroscopy 22(7), 1556–1562 (2014). https://doi.org/10.1007/s00167-013-2563-3

    Article  Google Scholar 

  15. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing System, vol. 32, pp. 8026–8037. Curran Associates, Inc. (2019)

    Google Scholar 

  16. Raposo, C., et al.: Video-based computer navigation in knee arthroscopy for patient-specific ACL reconstruction. Int. J. Comput. Assist. Radiol. Surg. 14(9), 1529–1539 (2019). https://doi.org/10.1007/s11548-019-02021-0

    Article  Google Scholar 

  17. Rossini, M., Valentini, S., Portaccio, I., Campolo, D., Fasano, A., Accoto, D.: Localization of drilling tool position through bone tissue identification during surgical drilling. Mechatronics 67, 102342 (2020). https://doi.org/10.1016/j.mechatronics.2020.102342

    Article  Google Scholar 

  18. Schöttle, P.B., Schmeling, A., Rosenstiel, N., Weiler, A.: Radiographic landmarks for femoral tunnel placement in medial patellofemoral ligament reconstruction. Am. J. Sports Med. 35(5), 801–804 (2007). https://doi.org/10.1177/0363546506296415

    Article  Google Scholar 

  19. Sederberg, T.W., Nishita, T.: Curve intersection using Bézier clipping. Comput.-Aided Des. 22(9), 538–549 (1990). https://doi.org/10.1016/0010-4485(90)90039-F

    Article  MATH  Google Scholar 

  20. Spiridonov, S.I., Slinkard, N.J., LaPrade, R.F.: Isolated and combined grade-III posterior cruciate ligament tears treated with double-bundle reconstruction with use of endoscopically placed femoral tunnels and grafts: operative technique and clinical outcomes. J. Bone Joint Surg. Am. 93(19), 1773–1780 (2011). https://doi.org/10.2106/JBJS.J.01638

  21. Warton, D.I., Wright, I.J., Falster, D.S., Westoby, M.: Bivariate line-fitting methods for allometry. Biol. Rev. Cambridge Philos. Soc. 81(2), 259–291 (2006). https://doi.org/10.1017/S1464793106007007

    Article  Google Scholar 

  22. Weimann, A., Wolfert, A., Zantop, T., Eggers, A.K., Raschke, M., Petersen, W.: Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy J. Arthroscopic Related Surg. 23(10), 1104–1111 (2007). https://doi.org/10.1016/j.arthro.2007.04.014

  23. Yang, B., Hu, L., Guo, N., Wang, Y., Liu, H., Han, Z.: Anterior cruciate ligament reconstruction surgery navigation and robotic positioning system under X-rays. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 156–163 (2018)

    Google Scholar 

  24. Yao, J., et al.: Effect of tibial drill-guide angle on the mechanical environment at bone tunnel aperture after anatomic single-bundle anterior cruciate ligament reconstruction. Int. Orthopaedics 38(5), 973–981 (2014). https://doi.org/10.1007/s00264-014-2290-5

    Article  Google Scholar 

  25. Zhu, M., et al.: Tibial tunnel placement in anatomic anterior cruciate ligament reconstruction: a comparison study of outcomes between patient-specific drill template versus conventional arthroscopic techniques. Archiv. Orthopaedic Trauma Surg. 138(4), 515–525 (2018). https://doi.org/10.1007/s00402-018-2880-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Kordon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kordon, F., Maier, A., Swartman, B., Privalov, M., El Barbari, J.S., Kunze, H. (2021). Automatic Path Planning for Safe Guide Pin Insertion in PCL Reconstruction Surgery. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics