Skip to main content

Personalized CT Organ Dose Estimation from Scout Images

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

With the rapid increase of CT usage, radiation dose across patient populations is also increasing. Therefore, it is desirable to reduce the CT radiation dose. However, the reduction in dose also incurs additional noise and with the degraded image quality, diagnostic performance can be compromised. Existing routine dosimetric quantities are usually based on absorbed dose within cylindrical phantoms and do not appropriately represent the actual patient dose. More comprehensive dose metrics such as effective dose require estimation of patient-specific dose at an organ level. Unfortunately, currently available systems are quite far from achieving this goal as well as limited by a number of manual adjustments, time-consuming and inefficient procedures. To overcome all these challenges in achieving the goal of patient safety through reduced dose without compromising image quality, we devise a fully-automated, end-to-end deep learning-based solution to perform real-time, patient-specific, organ-level dosimetric prediction of CT scans. Leveraging the 2D scout (frontal and lateral) images of the actual patients, which are routinely acquired prior to the CT scan, our proposed Scout-Net model estimates the patient-specific mean dose in real-time for six different organs. Our experimental evaluation on real patient data demonstrates the effectiveness of our Scout-Net model not only in real-time dose estimation (only 11 ms on average per scan), but also as a potential tool for optimizing CT radiation dose in specific patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/DIDSR/MCGPU, version 1.3, accessed on August 10, 2020.

  2. 2.

    https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT.

  3. 3.

    https://www.synapse.org/#!Synapse:syn3193805/wiki/89480.

  4. 4.

    http://medicaldecathlon.com/.

References

  1. Badal, A., Badano, A.: Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Med. Phys. 36(11), 4878–4880 (2009)

    Article  Google Scholar 

  2. Brook, O.R., Guralnik, L., Engel, A.: CT scout view as an essential part of CT reading. Australas. Radiol. 51(3), 211–217 (2007)

    Article  Google Scholar 

  3. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. ArXiv abs/1706.05587 (2017)

    Google Scholar 

  4. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  5. Damilakis, J.: CT Dosimetry: what has been achieved and what remains to be done. Invest. Radiol. 56(1), 62–68 (2021)

    Article  Google Scholar 

  6. Dutta, S., Das, B., Kaushik, S.: Assessment of optimal deep learning configuration for vertebrae segmentation from CT images. In: Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications. vol. 10954, pp. 298–305. SPIE (2019)

    Google Scholar 

  7. Fan, J., Xing, L., Dong, P., Wang, J., Hu, W., Yang, Y.: Data-driven dose calculation algorithm based on deep U-Net. Phys. Med. Biol. 65(24), 245035 (2020)

    Article  Google Scholar 

  8. Furhang, E.E., Chui, C.S., Sgouros, G.: A Monte Carlo approach to patient-specific dosimetry. Med. Phys. 23(9), 1523–1529 (1996)

    Article  Google Scholar 

  9. Götz, T.I., Schmidkonz, C., Chen, S., Al-Baddai, S., Kuwert, T., Lang, E.: A deep learning approach to radiation dose estimation. Phys. Med. Biol. 65(3), 035007 (2020)

    Article  Google Scholar 

  10. Gu, Z., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  11. Guerreiro, F., et al.: Deep learning prediction of proton and photon dose distributions for paediatric abdominal tumours. Radiother. Oncol. 156, 36–42 (2021)

    Article  Google Scholar 

  12. Imran, A.A.Z., Pal, D., Patel, B., Wang, A.: SSIQA: multi-task learning for non-reference CT image quality assessment with self-supervised noise level prediction. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 1962–1965 (2021)

    Google Scholar 

  13. Kachelrieß, M., Rehani, M.M.: Is it possible to kill the radiation risk issue in computed tomography? Physica Medica Eur. J. Med. Phys. 71, 176–177 (2020)

    Article  Google Scholar 

  14. Kontaxis, C., Bol, G., Lagendijk, J., Raaymakers, B.: DeepDose: towards a fast dose calculation engine for radiation therapy using deep learning. Phys. Med. Biol. 65(7), 075013 (2020)

    Article  Google Scholar 

  15. Lee, M.S., Hwang, D., Kim, J.H., Lee, J.S.: Deep-dose: a voxel dose estimation method using deep convolutional neural network for personalized internal dosimetry. Sci. Rep. 9(1), 1–9 (2019)

    Google Scholar 

  16. Lell, M.M., Kachelrieß, M.: Recent and upcoming technological developments in computed tomography: high speed, low dose, deep learning, multienergy. Invest. Radiol. 55(1), 8–19 (2020)

    Article  Google Scholar 

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  18. Maier, J., Eulig, E., Dorn, S., Sawall, S., Kachelrieß, M.: Real-time patient-specific CT dose estimation using a deep convolutional neural network. In: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), pp. 1–3. IEEE (2018)

    Google Scholar 

  19. McCollough, C., et al.: Use of water equivalent diameter for calculating patient size and size-specific dose estimates (SSDE) in CT: the report of AAPM task group 220. AAPM Rep. 2014, 6 (2014)

    Google Scholar 

  20. Offe, M., et al.: Evaluation of deep learning segmentation for rapid, patient-specific CT organ dose estimation using an LBTE solver. In: Medical Imaging 2020: Physics of Medical Imaging, vol. 11312, p. 113124O. International Society for Optics and Photonics (2020)

    Google Scholar 

  21. Protection, R.: ICRP publication 103. Ann. ICRP 37(2–4), 1–332 (2007)

    Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, pp. 234–241. Springer, Cham (2015)

    Chapter  Google Scholar 

  23. Sharma, S., Kapadia, A., Fu, W., Abadi, E., Segars, W.P., Samei, E.: A real-time Monte Carlo tool for individualized dose estimations in clinical CT. Phys. Med. Biol. 64(21), 215020 (2019)

    Article  Google Scholar 

  24. Wang, A., et al.: Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter-part ii: system modeling, scatter correction, and optimization. Med. Phys. 45(5), 1914–1925 (2018)

    Article  Google Scholar 

  25. Zhu, J., Liu, X., Chen, L.: A preliminary study of a photon dose calculation algorithm using a convolutional neural network. Phys. Med. Biol. 65(20), 20NT02 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah-Al-Zubaer Imran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Imran, AAZ. et al. (2021). Personalized CT Organ Dose Estimation from Scout Images. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics