Skip to main content

Scalable, Axiomatic Explanations of Deep Alzheimer’s Diagnosis from Heterogeneous Data

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Deep Neural Networks (DNNs) have an enormous potential to learn from complex biomedical data. In particular, DNNs have been used to seamlessly fuse heterogeneous information from neuroanatomy, genetics, biomarkers, and neuropsychological tests for highly accurate Alzheimer’s disease diagnosis. On the other hand, their black-box nature is still a barrier for the adoption of such a system in the clinic, where interpretability is absolutely essential. We propose Shapley Value Explanation of Heterogeneous Neural Networks (SVEHNN) for explaining the Alzheimer’s diagnosis made by a DNN from the 3D point cloud of the neuroanatomy and tabular biomarkers. Our explanations are based on the Shapley value, which is the unique method that satisfies all fundamental axioms for local explanations previously established in the literature. Thus, SVEHNN has many desirable characteristics that previous work on interpretability for medical decision making is lacking. To avoid the exponential time complexity of the Shapley value, we propose to transform a given DNN into a Lightweight Probabilistic Deep Network without re-training, thus achieving a complexity only quadratic in the number of features. In our experiments on synthetic and real data, we show that we can closely approximate the exact Shapley value with a dramatically reduced runtime and can reveal the hidden knowledge the network has learned from the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ancona, M., Oztireli, C., Gross, M.: Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In: Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 272–281 (2019)

    Google Scholar 

  2. Arrieta, A.B., et al.: Explainable Artificial Intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

    Article  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10(7), e0130140 (2015). https://doi.org/10.1371/journal.pone.0130140

  4. Blennow, K., Vanmechelen, E., Hampel, H.: CSF total tau, A\(\beta \)42 and phosphorylated tau protein as biomarkers for Alzheimer’s disease. Mol. Neurobiol. 24(1–3), 087–098 (2001). https://doi.org/10.1385/mn:24:1-3:087

    Article  Google Scholar 

  5. Castro, J., Gómez, D., Tejada, J.: Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 36(5), 1726–1730 (2009). https://doi.org/10.1016/j.cor.2008.04.004

    Article  MathSciNet  MATH  Google Scholar 

  6. Ching, T., et al.: Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 15(141), 20170387 (2018). https://doi.org/10.1098/rsif.2017.0387

    Article  Google Scholar 

  7. Cochran, W.G.: Sampling Techniques, 3rd edn. John Wiley & Sons, Hoboken (1977)

    Google Scholar 

  8. Fatima, S.S., Wooldridge, M., Jennings, N.R.: A linear approximation method for the Shapley value. Artif. Intell. 172(14), 1673–1699 (2008). https://doi.org/10.1016/j.artint.2008.05.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Fischl, B.: FreeSurfer. Neuroimage 62(2), 774–781 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.021

    Article  Google Scholar 

  10. Gast, J., Roth, S.: Lightweight probabilistic deep networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3369–3378 (2018)

    Google Scholar 

  11. Genin, E., et al.: APOE and Alzheimer disease: a major gene with semi-dominant inheritance. Mol. Psychiatry 16(9), 903–907 (2011). https://doi.org/10.1038/mp.2011.52

    Article  Google Scholar 

  12. Gutiérrez-Becker, B., Wachinger, C.: Deep multi-structural shape analysis: application to neuroanatomy. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 523–531 (2018). https://doi.org/10.1007/978-3-030-00931-1_60

  13. Jack, C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008). https://doi.org/10.1002/jmri.21049

    Article  Google Scholar 

  14. Joie, R.L., et al.: Hippocampal subfield volumetry in mild cognitive impairment, Alzheimer’s disease and semantic dementia. NeuroImage Clin. 3, 155–162 (2013). https://doi.org/10.1016/j.nicl.2013.08.007

  15. Járvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002). https://doi.org/10.1145/582415.582418

    Article  Google Scholar 

  16. Kopper, P., Pölsterl, S., Wachinger, C., Bischl, B., Bender, A., Rügamer, D.: Semi-structured deep piecewise exponential models. In: Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021, vol. 146, pp. 40–53 (2021)

    Google Scholar 

  17. Li, X., Dvornek, N.C., Zhuang, J., Ventola, P., Duncan, J.S.: Brain biomarker interpretation in ASD using deep learning and fMRI. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 206–214 (2018). https://doi.org/10.1007/978-3-030-00931-1_24

  18. Lundberg, S.M., Lee, S.I.: A Unified Approach to Interpreting Model Predictions. Adv. Neural. Inf. Process. Syst. 30, 4765–4774 (2017)

    Google Scholar 

  19. Meng, X., D’Arcy, C.: Education and dementia in the context of the cognitive reserve hypothesis: a systematic review with meta-analyses and qualitative analyses. PLoS ONE 7(6), e38268 (2012). https://doi.org/10.1371/journal.pone.0038268

  20. Pölsterl, S., Sarasua, I., Gutiérrez-Becker, B., Wachinger, C.: A wide and deep neural network for survival analysis from anatomical shape and tabular clinical data. In: Machine Learning and Knowledge Discovery in Databases, pp. 453–464 (2020). https://doi.org/10.1007/978-3-030-43823-4_37

  21. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)

    Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: The IEEE International Conference on Computer Vision (ICCV) (2017). https://doi.org/10.1109/iccv.2017.74

  23. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  24. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 3145–3153 (2017)

    Google Scholar 

  25. Sundararajan, M., Najmi, A.: The many Shapley values for model explanation. In: Proceedings of the 37th International Conference on Machine Learning, vol. 119, pp. 9269–9278 (2020)

    Google Scholar 

  26. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic Attribution for Deep Networks. In: Proc. of the 34th International Conference on Machine Learning. vol. 70, pp. 3319–3328 (2017)

    Google Scholar 

  27. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: European Conference on Computer Vision (ECCV), pp. 818–833 (2014)

    Google Scholar 

  28. Zhao, G., Zhou, B., Wang, K., Jiang, R., Xu, M.: Respond-CAM: analyzing deep models for 3D imaging data by visualizations. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 485–492 (2018). https://doi.org/10.1007/978-3-030-00928-1_55

  29. Zhuang, J., Dvornek, N.C., Li, X., Ventola, P., Duncan, J.S.: Invertible network for classification and biomarker selection for ASD. In: Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 700–708 (2019). https://doi.org/10.1007/978-3-030-32248-9_78

Download references

Acknowledgements

This research was supported by the Bavarian State Ministry of Science and the Arts and coordinated by the Bavarian Research Institute for Digital Transformation, and the Federal Ministry of Education and Research in the call for Computational Life Sciences (DeepMentia, 031L0200A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Pölsterl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pölsterl, S., Aigner, C., Wachinger, C. (2021). Scalable, Axiomatic Explanations of Deep Alzheimer’s Diagnosis from Heterogeneous Data. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics