Skip to main content

An Interpretable Approach to Automated Severity Scoring in Pelvic Trauma

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Pelvic ring disruptions result from blunt injury mechanisms and are often found in patients with multi-system trauma. To grade pelvic fracture severity in trauma victims based on whole-body CT, the Tile AO/OTA classification is frequently used. Due to the high volume of whole-body trauma CTs generated in busy trauma centers, an automated approach to Tile classification would provide substantial value, e. g., to prioritize the reading queue of the attending trauma radiologist. In such scenario, an automated method should perform grading based on a transparent process and based on interpretable features to enable interaction with human readers and lower their workload by offering insights from a first automated read of the scan. This paper introduces an automated yet interpretable pelvic trauma decision support system to assist radiologists in fracture detection and Tile grade classification. The method operates similarly to human interpretation of CT scans and first detects distinct pelvic fractures on CT with high specificity using a Faster-RCNN model that are then interpreted using a structural causal model based on clinical best practices to infer an initial Tile grade. The Bayesian causal model and finally, the object detector are then queried for likely co-occurring fractures that may have been rejected initially due to the highly specific operating point of the detector, resulting in an updated list of detected fractures and corresponding final Tile grade. Our method is transparent in that it provides finding location and type using the object detector, as well as information on important counterfactuals that would invalidate the system’s recommendation and achieves an AUC of 83.3%/85.1% for translational/rotational instability. Despite being designed for human-machine teaming, our approach does not compromise on performance compared to previous black-box approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Welcome to CausalNex’s API docs and tutorials! – causalnex 0.9.1 documentation (Feb 2021). https://causalnex.readthedocs.io/en/latest. Accessed 26 Feb 2021

  2. Abbas, W., et al.: Lower leg bone fracture detection and classification using faster R-CNN for x-rays images. In: 2020 IEEE 23rd International Multitopic Conference (INMIC), pp. 1–6. IEEE (2020)

    Google Scholar 

  3. Ahmad, M.A., Eckert, C., Teredesai, A.: Interpretable machine learning in healthcare. In: Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, pp. 559–560 (2018)

    Google Scholar 

  4. Blum, A., Gillet, R., Urbaneja, A., Teixeira, P.G.: Automatic detection of rib fractures: are we there yet? EBioMedicine 63 (2021). https://doi.org/10.1016/j.ebiom.2020.103158

  5. Burns, J.E., Yao, J., Summers, R.M.: Artificial intelligence in musculoskeletal imaging: a paradigm shift. J. Bone Miner. Res. 35(1), 28–35 (2020). https://doi.org/10.1002/jbmr.3849

    Article  Google Scholar 

  6. Castro, D.C., Walker, I., Glocker, B.: Causality matters in medical imaging. Nat. Commun. 11(3673), 1–10 (2020). https://doi.org/10.1038/s41467-020-17478-w

    Article  Google Scholar 

  7. Chang, C.H., Creager, E., Goldenberg, A., Duvenaud, D.: Explaining image classifiers by counterfactual generation. arXiv preprint arXiv:1807.08024 (2018)

  8. Cheng, C.T., et al.: A scalable physician-level deep learning algorithm detects universal trauma on pelvic radiographs. Nat. Commun. 12(1066), 1–10 (2021). https://doi.org/10.1038/s41467-021-21311-3

    Article  Google Scholar 

  9. Coccolini, F., et al.: Pelvic trauma: WSES classification and guidelines. World J. Emerg. Surg. 12, 5 (2017). https://doi.org/10.1186/s13017-017-0117-6

    Article  Google Scholar 

  10. Dreizin, D.: Commentary on multidetector CT in vascular injuries resulting from pelvic fractures. Radiographics 39(7), 2130–2133 (2019)

    Article  Google Scholar 

  11. Dreizin, D., et al.: CT prediction model for major arterial injury after blunt pelvic ring disruption. Radiology 287(3), 1061–1069 (2018). https://doi.org/10.1148/radiol.2018170997

    Article  Google Scholar 

  12. Dreizin, D., et al.: An automated deep learning method for tile AO/OTA pelvic fracture severity grading from trauma whole-body CT. J. Digit. Imaging 34(1), 53–65 (2021)

    Article  Google Scholar 

  13. Dreizin, D., Munera, F.: Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32(3), 609–631 (2012). https://pubs.rsna.org/doi/full/10.1148/rg.323115099

  14. Dreizin, D., et al.: Can MDCT unmask instability in binder-stabilized pelvic ring disruptions? Am. J. Roentgenol. 207(6), 1244–1251 (2016). https://doi.org/10.2214/AJR.16.16630

    Article  Google Scholar 

  15. Fong, R., Patrick, M., Vedaldi, A.: Understanding deep networks via extremal perturbations and smooth masks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2950–2958 (2019)

    Google Scholar 

  16. Kalmet, P.H., et al.: Deep learning in fracture detection: a narrative review.Acta Orthop. 91(2), 215–220 (2020)

    Google Scholar 

  17. Lenis, D., Major, D., Wimmer, M., Berg, A., Sluiter, G., Bühler, K.: Domain aware medical image classifier interpretation by counterfactual impact analysis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 315–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_31

    Chapter  Google Scholar 

  18. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochem. Med. (Zagreb). 22(3), 276 (2012). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900052

  19. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Elsevier, Amsterdam (2014)

    Google Scholar 

  20. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. arXiv (June 2015). https://arxiv.org/abs/1506.01497v3

  21. Sato, Y., et al.: A computer-aided diagnosis system using artificial intelligence for hip fractures-multi-institutional joint development research. arXiv e-prints pp. arXiv-2003 (2020)

    Google Scholar 

  22. Schölkopf, B., et al.: Towards Causal Representation Learning. arXiv (February 2021). https://arxiv.org/abs/2102.11107v1

  23. Tile, M.: Pelvic ring fractures: should they be fixed? J. Bone Joint Surg. Br. 70(1), 1–12 (1988). https://doi.org/10.1302/0301-620X.70B1.3276697

    Article  Google Scholar 

  24. Tile, M.: Acute pelvic fractures: I. causation and classification. J. Am. Acad. Orthop. Surg. 4(3), 143–151 (1996). https://doi.org/10.5435/00124635-199605000-00004, https://pubmed.ncbi.nlm.nih.gov/10795049/

  25. Tonekaboni, S., Joshi, S., McCradden, M.D., Goldenberg, A.: What clinicians want: contextualizing explainable machine learning for clinical end use. In: Machine Learning for Healthcare Conference, pp. 359–380. PMLR (2019)

    Google Scholar 

  26. Vaidya, R., Scott, A.N., Tonnos, F., Hudson, I., Martin, A.J., Sethi, A.: Patients with pelvic fractures from blunt trauma. what is the cause of mortality and when? Am. J. Surg. 211(3), 495–500 (2016). https://doi.org/10.1016/j.amjsurg.2015.08.038

  27. Vaidya, R., Scott, A.N., Tonnos, F., Hudson, I., Sethi, A.: Patients with Pelvic Fractures from blunt trauma. what is the cause of mortality and when? Am. J. Surg. 211(3), 495–500 (2015). https://doi.org/10.1016/j.amjsurg.2015.08.038

  28. Yahalomi, E., Chernofsky, M., Werman, M.: Detection of distal radius fractures trained by a small set of X-ray images and Faster R-CNN. arXiv (December 2018). https://arxiv.org/abs/1812.09025v1

  29. Zingg, T., et al.: Interobserver reliability of the tile classification system for pelvic fractures among radiologists and surgeons. Eur. Radiol. 31(3), 1517–1525 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

S.F. was supported by the ICL-TUM Joint Academy for Doctoral (JADS) program. D.D. was funded by NIH K08 EB027141-01A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Unberath .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1028 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zapaishchykova, A., Dreizin, D., Li, Z., Wu, J.Y., Faghihroohi, S., Unberath, M. (2021). An Interpretable Approach to Automated Severity Scoring in Pelvic Trauma. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics