Skip to main content

Demystifying T1-MRI to FDG\(^{18}\)-PET Image Translation via Representational Similarity

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12903))

Abstract

Recent development of image-to-image translation techniques has enabled the generation of rare medical images (e.g., PET) from common ones (e.g., MRI). Beyond the potential benefits of the reduction in scanning time, acquisition cost, and radiation exposure risks, the translation models in themselves are inscrutable black boxes. In this work, we propose two approaches to demystify the image translation process, where we particularly focus on the T1-MRI to PET translation. First, we adopt the representational similarity analysis and discover that the process of T1-MR to PET image translation includes the stages of brain tissue segmentation and brain region recognition, which unravels the relationship between the structural and functional neuroimaging data. Second, based on our findings, an Explainable and Simplified Image Translation (ESIT) model is proposed to demonstrate the capability of deep learning models for extracting gray matter volume information and identifying brain regions related to normal aging and Alzheimer’s disease, which untangles the biological plausibility hidden in deep learning models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS One 10, e0130140 (2015)

    Article  Google Scholar 

  2. Bailly, M., et al.: Precuneus and cingulate cortex atrophy and hypometabolism in patients with Alzheimer’s disease and mild cognitive impairment: MRI and 18F-FDG PET quantitative analysis using FreeSurfer. BioMed Res. Int. (2015)

    Google Scholar 

  3. Berti, V., Mosconi, L., Pupi, A.: Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clin. 9, 129–140 (2014)

    Article  Google Scholar 

  4. Chételat, G., et al.: Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain 131, 60–71 (2008)

    Article  Google Scholar 

  5. Dale, P., George, A., David, F., Lawrence, K., Anthony-Samuel, L., James, M., S, W.: Neuroscience, 2nd edn. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  6. Driscoll, M.E., Bollu, P.C., Tadi, P.: Neuroanatomy, Nucleus Caudate. StatPearls Publishing, Treasure Island (FL) (2020)

    Google Scholar 

  7. Gaser, C., Dahnke, R.: Cat-a computational anatomy toolbox for the analysis of structural MRI data. Hum. Brain Mapp. (2016)

    Google Scholar 

  8. Hammers, A., et al.: Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 19, 224–247 (2003)

    Article  Google Scholar 

  9. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging (2008)

    Google Scholar 

  10. Lan, H., Toga, A., Sepehrband, F.: SC-GAN: 3D self-attention conditional GAN with spectral normalization for multi-modal neuroimaging synthesis. bioRxiv:2020.06.09.143297 (2020)

    Google Scholar 

  11. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  12. Lowe, V.J., et al.: Association of hypometabolism and amyloid levels in aging, normal subjects. Neurology 82, 1959–1967 (2014)

    Article  Google Scholar 

  13. Manninen, S., et al.: Cerebral grey matter density is associated with neuroreceptor and neurotransporter availability: a combined PET and MRI study. bioRxiv:2020.01.29.924530 (2020)

    Google Scholar 

  14. Marcus, C., Mena, E., Subramaniam, R.M.: Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med. 39, e413 (2014)

    Article  Google Scholar 

  15. Márquez, F., Yassa, M.A.: Neuroimaging biomarkers for Alzheimer’s disease. Mol. Neurodegeneration (2019)

    Google Scholar 

  16. Mosconi, L.: Glucose metabolism in normal aging and Alzheimer’s disease: methodological and physiological considerations for PET studies. Clin. Transl. Imaging 1, 217–233 (2013)

    Article  Google Scholar 

  17. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  18. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  19. Penny, W.D., Friston, K.J., Ashburner, J.T., Kiebel, S.J., Nichols, T.E.: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, Cambridge (2011)

    Google Scholar 

  20. Rolls, E.T., Huang, C.C., Lin, C.P., Feng, J., Joliot, M.: Automated anatomical labelling atlas 3. NeuroImage 206, 116189 (2020)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  23. Shamchi, S.P., et al.: Normal patterns of regional brain 18F-FDG uptake in normal aging. Hell. J. Nucl. Med. (2018)

    Google Scholar 

  24. Shulman, R.G., Rothman, D.L., Behar, K.L., Hyder, F.: Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci. 27, 489–495 (2004)

    Article  Google Scholar 

  25. Sikka, A., Peri, S.V., Bathula, D.R.: MRI to FDG-PET: cross-modal synthesis using 3D U-Net for multi-modal Alzheimer’s classification. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 80–89. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_9

    Chapter  Google Scholar 

  26. Sun, H., et al.: Dual-glow: conditional flow-based generative model for modality transfer. In: IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  27. Wei, W., et al.: Learning myelin content in multiple sclerosis from multimodal MRI through adversarial training. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 514–522. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_59

    Chapter  Google Scholar 

  28. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. ArXiv:1506.06579 (2015)

  29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hsiang Kao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 622 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kao, CH., Chen, YS., Chen, LF., Chiu, WC. (2021). Demystifying T1-MRI to FDG\(^{18}\)-PET Image Translation via Representational Similarity. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87199-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87198-7

  • Online ISBN: 978-3-030-87199-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics