Abstract
Computational histopathology studies have shown that stain color variations considerably hamper the performance. Stain color variations indicate the slides exhibit greatly different color appearance due to the diversity of chemical stains, staining procedures, and slide scanners. Previous approaches tend to improve model robustness via data augmentation or stain color normalization. However, they still suffer from generalization to new domains with unseen stain colors. In this study, we address the issue of unseen color domain generalization in histopathology images by encouraging the model to adapt varied stain colors. To this end, we propose a novel data augmentation method, stain mix-up, which incorporates the stain colors of unseen domains into training data. Unlike previous mix-up methods employed in computer vision, the proposed method constructs the combination of stain colors without using any label information, hence enabling unsupervised domain generalization. Extensive experiments are conducted and demonstrate that our method is general enough to different tasks and stain methods, including H&E stains for tumor classification and hematological stains for bone marrow cell instance segmentation. The results validate that the proposed stain mix-up can significantly improves the performance on the unseen domains.
Keywords
- Domain generalization
- Mix-up
- Stain color
This is a preview of subscription content, access via your institution.
Buying options



References
Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018)
Beer, A., Beer, P.: Determination of the absorption of red light in colored liquids. Annalen der Physik und Chemie 86(5), 78–88 (1852)
Bug, D., et al.: Context-based normalization of histological stains using deep convolutional features. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 135–142. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_16
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2961–2969 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of tricks for image classification with convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 558–567 (2019)
Liu, Y., et al.: Detecting cancer metastases on gigapixel pathology images. arXiv preprint arXiv:1703.02442 (2017)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019)
Luo, C., Song, C., Zhang, Z.: Generalizing person re-identification by camera-aware invariance learning and cross-domain mixup. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 224–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_14
Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110. IEEE (2009)
Mao, X., Ma, Y., Yang, Z., Chen, Y., Li, Q.: Virtual mixup training for unsupervised domain adaptation. arXiv preprint arXiv:1905.04215 (2019)
Nadeem, S., Hollmann, T., Tannenbaum, A.: Multimarginal Wasserstein barycenter for stain normalization and augmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 362–371. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_35
Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Gr. Appl. 21(5), 34–41 (2001)
Ruifrok, A.C., Johnston, D.A., et al.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Shaban, M.T., Baur, C., Navab, N., Albarqouni, S.: Staingan: stain style transfer for digital histological images. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (Isbi 2019), pp. 953–956. IEEE (2019)
Tellez, D., et al.: Whole-slide mitosis detection in h&e breast histology using phh3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018)
Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)
Veta, M., Van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P.: Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method. PloS one 11(8), e0161286 (2016)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zhou, N., Cai, D., Han, X., Yao, J.: Enhanced cycle-consistent generative adversarial network for color normalization of h&e stained images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 694–702. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_77
Acknowledgement
We thank Wen-Chien Chou M.D.(National Taiwan University Hospital), Ta-Chuan Yu M.D.(National Taiwan University Hospital Yunlin Branch) and Poshing Lee M.D.(Department of Hematopathology, BioReference) for Hema dataset construction. This paper was supported in part by the Ministry of Science and Technology, Taiwan, under Grants MOST 110-2634-F-007-015 and MOST 109-2221-E-009-113-MY3.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chang, JR. et al. (2021). Stain Mix-Up: Unsupervised Domain Generalization for Histopathology Images. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12903. Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-87199-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87198-7
Online ISBN: 978-3-030-87199-4
eBook Packages: Computer ScienceComputer Science (R0)
-
Published in cooperation with
http://miccai.org/