Skip to main content

Reciprocal Learning for Semi-supervised Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

Semi-supervised learning has been recently employed to solve problems from medical image segmentation due to challenges in acquiring sufficient manual annotations, which is an important prerequisite for building high-performance deep learning methods. Since unlabeled data is generally abundant, most existing semi-supervised approaches focus on how to make full use of both limited labeled data and abundant unlabeled data. In this paper, we propose a novel semi-supervised strategy called reciprocal learning for medical image segmentation, which can be easily integrated into any CNN architecture. Concretely, the reciprocal learning works by having a pair of networks, one as a student and one as a teacher. The student model learns from pseudo label generated by the teacher. Furthermore, the teacher updates its parameters autonomously according to the reciprocal feedback signal of how well student performs on the labeled set. Extensive experiments on two public datasets show that our method outperforms current state-of-the-art semi-supervised segmentation methods, demonstrating the potential of our strategy for the challenging semi-supervised problems. The code is publicly available at https://github.com/XYZach/RLSSS.

X. Zeng, R. Huang and Y. Zhong—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This study mainly focused on the challenging problem of semi-supervised learning for insufficient annotations. Several semi-supervised segmentation studies used cropped images for validations, e.g., UAMT [16] used cropped left atrium images, and [8] used cropped pancreas images. We followed their experimental settings.

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  2. Hang, W., et al.: Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 562–571. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_55

    Chapter  Google Scholar 

  3. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  4. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 552–561. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_54

    Chapter  Google Scholar 

  5. Li, X., Yu, L., Chen, H., Fu, C.W., Xing, L., Heng, P.A.: Transformation-consistent self-ensembling model for semisupervised medical image segmentation. TNNLS 32(2), 523–534 (2020)

    Google Scholar 

  6. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. In: ICLR (2018)

    Google Scholar 

  7. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  8. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

    Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_68

    Chapter  Google Scholar 

  12. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NIPS, pp. 1195–1204 (2017)

    Google Scholar 

  13. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3–4), 229–256 (1992). https://doi.org/10.1007/BF00992696

    Article  MATH  Google Scholar 

  14. Xia, Y., et al.: 3D semi-supervised learning with uncertainty-aware multi-view co-training. In: WACV, pp. 3646–3655 (2020)

    Google Scholar 

  15. Xiong, Z., et al.: A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging. Med. Image Anal. 67, 101832 (2021)

    Article  Google Scholar 

  16. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key R&D Program of China (No. 2019YFC0118300), in part by the National Natural Science Foundation of China under Grants 62071305, 61701312 and 81971631, in part by the Guangdong Basic and Applied Basic Research Foundation (2019A1515010847), in part by the Medical Science and Technology Foundation of Guangdong Province (B2019046), in part by the Natural Science Foundation of Shenzhen University (No. 860-000002110129), and in part by the Shenzhen Peacock Plan (No. KQTD2016053112051497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, X. et al. (2021). Reciprocal Learning for Semi-supervised Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics