Skip to main content

Semi-supervised Meta-learning with Disentanglement for Domain-Generalised Medical Image Segmentation

Part of the Lecture Notes in Computer Science book series (LNIP,volume 12902)

Abstract

Generalising deep models to new data from new centres (termed here domains) remains a challenge. This is largely attributed to shifts in data statistics (domain shifts) between source and unseen domains. Recently, gradient-based meta-learning approaches where the training data are split into meta-train and meta-test sets to simulate and handle the domain shifts during training have shown improved generalisation performance. However, the current fully supervised meta-learning approaches are not scalable for medical image segmentation, where large effort is required to create pixel-wise annotations. Meanwhile, in a low data regime, the simulated domain shifts may not approximate the true domain shifts well across source and unseen domains. To address this problem, we propose a novel semi-supervised meta-learning framework with disentanglement. We explicitly model the representations related to domain shifts. Disentangling the representations and combining them to reconstruct the input image allows unlabeled data to be used to better approximate the true domain shifts for meta-learning. Hence, the model can achieve better generalisation performance, especially when there is a limited amount of labeled data. Experiments show that the proposed method is robust on different segmentation tasks and achieves state-of-the-art generalisation performance on two public benchmarks. Code is publicly available at: https://github.com/vios-s/DGNet.

Keywords

  • Domain generalisation
  • Disentanglement
  • Medical image segmentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    With the exception of [41] which clusters unlabeled data to generate pseudo labels, but unfortunately is not applicable to segmentation.

References

  1. Achille, A., Soatto, S.: Emergence of invariance and disentanglement in deep representations. JMLR 19(1), 1947–1980 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Antoniou, A., Edwards, H., Storkey, A.: How to train your MAML. In: Proceedings of the ICLR (2019)

    Google Scholar 

  3. Bernard, O., Lalande, A., Zotti, C., Cervenansky, F., Yang, X., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE TMI 37(11), 2514–2525 (2018)

    Google Scholar 

  4. Bian, C., Yuan, C., Wang, J., Li, M., et al.: Uncertainty-aware domain alignment for anatomical structure segmentation. MedIA 64, 101732 (2020)

    Google Scholar 

  5. Campello, V.M., Gkontra, P., Izquierdo, C., et al.: Multi-centre, multi-vendor and multi-disease cardiac segmentation: the M&MS challenge. IEEE Trans. Med. Imag. (2021)

    Google Scholar 

  6. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalisation by solving jigsaw puzzles. In: Proceedings of the CVPR, pp. 2229–2238 (2019)

    Google Scholar 

  7. Chartsias, A., Joyce, T., Papanastasiou, G., et al.: Disentangled representation learning in cardiac image analysis. Med. Image Anal. 58, 101535 (2019)

    Google Scholar 

  8. Chen, C., Qin, C., Qiu, H., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7(25), 1–33 (2020)

    Google Scholar 

  9. Dewey, B.E., et al.: A disentangled latent space for cross-site MRI harmonization. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 720–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_70

    CrossRef  Google Scholar 

  10. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    CrossRef  Google Scholar 

  11. Dou, Q., Castro, D.C., Kamnitsas, K., Glocker, B.: Domain generalisation via model-agnostic learning of semantic features. Proc, NeurIPS (2019)

    Google Scholar 

  12. Dubuisson, M.P., Jain, A.K.: A modified hausdorff distance for object matching. In: Proceedings of the ICPR, vol. 1, pp. 566–568. IEEE (1994)

    Google Scholar 

  13. Higgins, I., Matthey, L., Pal, A., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework In: Proceedings of the ICLR (2016)

    Google Scholar 

  14. Huang, J., Guan, D., Xiao, A., Lu, S.: FSDR: frequency space domain randomization for domain generalization. In: Proceedings of the CVPR (2021)

    Google Scholar 

  15. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the ICCV, pp. 1501–1510 (2017)

    Google Scholar 

  16. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the ECCV, pp. 172–189 (2018)

    Google Scholar 

  17. Ilse, M., Tomczak, J.M., Louizos, C., Welling, M.: Diva: Domain invariant variational autoencoders. In: Proceedings of the MIDL, pp. 322–348. PMLR (2020)

    Google Scholar 

  18. Isensee, F., et al.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    CrossRef  Google Scholar 

  19. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    CrossRef  Google Scholar 

  20. Khandelwal, P., Yushkevich, P.: Domain generalizer: a few-shot meta learning framework for domain generalization in medical imaging. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 73–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_8

    CrossRef  Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (2015)

    Google Scholar 

  22. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.: Learning to generalise: meta-learning for domain generalisation. In: Proceedings of the AAAI (2018)

    Google Scholar 

  23. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training for domain generalisation. In: Proceedings of the ICCV, pp. 1446–1455 (2019)

    Google Scholar 

  24. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the CVPR, pp. 5400–5409 (2018)

    Google Scholar 

  25. Li, H., Wang, Y., Wan, R., et al.: Domain generalisation for medical imaging classification with linear-dependency regularization. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  26. Li, X., et al.: Difficulty-aware meta-learning for rare disease diagnosis. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 357–366. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_35

    CrossRef  Google Scholar 

  27. Li, Y., Tian, X., Gong, M., et al.: Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the ECCV, pp. 624–639 (2018)

    Google Scholar 

  28. Li, Y., Chen, J., Xie, X., Ma, K., Zheng, Y.: Self-loop uncertainty: a novel pseudo-label for semi-supervised medical image segmentation. In: Proceedings of the MICCAI, pp. 614–623. Springer, Cham (2020)

    Google Scholar 

  29. Liu, Q., Dou, Q., Heng, P.A.: Shape-aware meta-learning for generalising prostate MRI segmentation to unseen domains. In: Proceedings of the MICCAI, pp. 475–485. Springer, Cham (2020)

    Google Scholar 

  30. Liu, X., Thermos, S., Chartsias, A., et al.: Disentangled representations for domain-generalised cardiac segmentation. In: International Workshop on STACOM (2020)

    Google Scholar 

  31. Liu, X., Thermos, S., Valvano, G., et al.: Metrics for exposing the biases of content-style disentanglement. arXiv preprint arXiv:2008.12378 (2020)

  32. Llera Montero, M., Ludwig, C.J.H., Ponte Costa, R., Malhotra, G., Bowers, J.: The role of disentanglement in generalisation. In: Proceedings of the ICLR (2021)

    Google Scholar 

  33. Locatello, F., et al.: Challenging common assumptions in the unsupervised learning of disentangled representations. In: Proceeding of the ICML, pp. 4114–4124. PMLR (2019)

    Google Scholar 

  34. Ma, W.D.K., Lewis, J., Kleijn, W.B.: The HSIC Bottleneck: Deep Learning without Back-Propagation. In: Proceedings of the AAAI, pp. 5085–5092 (2020)

    Google Scholar 

  35. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalisation via invariant feature representation. In: Proceedings of the ICML, pp. 10–18. PMLR (2013)

    Google Scholar 

  36. Paszke, A., Gross, S., Massa, F., Lerer, A., et. al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the NeurIPS, pp. 8026–8037 (2019)

    Google Scholar 

  37. Pomponio, R., Erus, G., et al.: Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 208, 116450 (2020)

    Google Scholar 

  38. Prados, F., Ashburner, J., Blaiotta, C., Brosch, T., Carballido-Gamio, J., Cardoso, M.J., Conrad, B.N., Datta, E., Dávid, G., De Leener, B., et al.: Spinal cord grey matter segmentation challenge. Neuroimage 152, 312–329 (2017)

    CrossRef  Google Scholar 

  39. Puyol-Anton, E., Ruijsink, B., Piechnik k., S., Neubauer, S., et al.: Fairness in cardiac MR image analysis: an investigation of bias due to data imbalance in deep learning based segmentation. arXiv preprint arXiv:2106.12387 (2021)

  40. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    CrossRef  Google Scholar 

  41. Sharifi-Noghabi, H., Asghari, H., Mehrasa, N., Ester, M.: Domain generalisation via semi-supervised meta learning. arXiv preprint arXiv:2009.12658 (2020)

  42. Tao, Q., Yan, W., Wang, Y., Paiman, E.H., Shamonin, et al.: Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. Radiology 290(1), 81–88 (2019)

    Google Scholar 

  43. Wang, J., Zhou, S., Fang, C., Wang, L., Wang, J.: Meta corrupted pixels mining for medical image segmentation. In: Proceedings of the MICCAI, pp. 335–345. Springer (2020)

    Google Scholar 

  44. Yu, X., Chen, Y., Li, T., Liu, S., Li, G.: Multi-mapping image-to-image translation via learning disentanglement. In: Proceedings of the NeurIPS (2019)

    Google Scholar 

  45. Zhang, L., Wang, X., Yang, D., Sanford, T., et al.: Generalizing deep learning for medical image segmentation to unseen domains via deep stacked transformation. IEEE Trans, Med. Image 39(7), 2531–2540 (2020)

    CrossRef  Google Scholar 

  46. Zhao, S., Gong, M., Liu, T., Fu, H., Tao, D.: Domain generalization via entropy regularization. In: Proceedings of the NeurIPS, vol. 33 (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the University of Edinburgh, the Royal Academy of Engineering and Canon Medical Research Europe by a PhD studentship to Xiao Liu. This work was partially supported by the Alan Turing Institute under the EPSRC grant EP/N510129/1. We thank Nvidia for donating a Titan-X GPU. S.A. Tsaftaris acknowledges the support of Canon Medical and the Royal Academy of Engineering and the Research Chairs and Senior Research Fellowships scheme (grant RCSRF1819\(\backslash \)8\(\backslash \)25).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 240 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Thermos, S., O’Neil, A., Tsaftaris, S.A. (2021). Semi-supervised Meta-learning with Disentanglement for Domain-Generalised Medical Image Segmentation. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)