Skip to main content

Topological Learning and Its Application to Multimodal Brain Network Integration

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12902))

Abstract

A long-standing challenge in multimodal brain network analyses is to integrate topologically different brain networks obtained from diffusion and functional MRI in a coherent statistical framework. Existing multimodal frameworks will inevitably destroy the topological difference of the networks. In this paper, we propose a novel topological learning framework that integrates networks of different topology through persistent homology. Such challenging task is made possible through the introduction of a new topological loss that bypasses intrinsic computational bottlenecks and thus enables us to perform various topological computations and optimizations with ease. We validate the topological loss in extensive statistical simulations with ground truth to assess its effectiveness of discriminating networks. Among many possible applications, we demonstrate the versatility of topological loss in the twin imaging study where we determine the extend to which brain networks are genetically heritable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, C.O., et al.: Spectral mapping of brain functional connectivity from diffusion imaging. Sci. Rep. 8(1), 1–15 (2018)

    Google Scholar 

  2. Blokland, G., McMahon, K., Thompson, P., Martin, N., de Zubicaray, G., Wright, M.: Heritability of working memory brain activation. J. Neurosci. 31, 10882–10890 (2011)

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)

    Article  Google Scholar 

  4. Chiang, M.C., et al.: Genetics of white matter development: a DTI study of 705 twins and their siblings aged 12 to 29. NeuroImage 54, 2308–2317 (2011)

    Article  Google Scholar 

  5. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15555-0_36

    Chapter  Google Scholar 

  6. Chung, M.K., Huang, S.G., Gritsenko, A., Shen, L., Lee, H.: Statistical inference on the number of cycles in brain networks. In: 16th International Symposium on Biomedical Imaging, pp. 113–116. IEEE (2019)

    Google Scholar 

  7. Chung, M.K., Lee, H., DiChristofano, A., Ombao, H., Solo, V.: Exact topological inference of the resting-state brain networks in twins. Network Neurosci. 3, 674 (2019)

    Article  Google Scholar 

  8. Chung, M.K., Xie, L., Huang, S.-G., Wang, Y., Yan, J., Shen, L.: Rapid acceleration of the permutation test via transpositions. In: Schirmer, M.D., Venkataraman, A., Rekik, I., Kim, M., Chung, A.W. (eds.) CNI 2019. LNCS, vol. 11848, pp. 42–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32391-2_5

    Chapter  Google Scholar 

  9. Clough, J.R., Oksuz, I., Byrne, N., Schnabel, J.A., King, A.P.: Explicit topological priors for deep-learning based image segmentation using persistent homology. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 16–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_2

    Chapter  Google Scholar 

  10. Cohen-Steiner, D., Edelsbrunner, H., Harer, J., Mileyko, Y.: Lipschitz functions have Lp-stable persistence. Found. Comput. Math. 10, 127 (2010). https://doi.org/10.1007/s10208-010-9060-6

    Article  MathSciNet  MATH  Google Scholar 

  11. Ghrist, R.: Barcodes: the persistent topology of data. Bull. Am. Math. Soc. 45(1), 61–75 (2008)

    Article  MathSciNet  Google Scholar 

  12. Glahn, D., et al.: Genetic control over the resting brain. Proc. Nat. Acad. Sci. 107, 1223–1228 (2010)

    Article  Google Scholar 

  13. Gold, S., Rangarajan, A.: A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 377–388 (1996)

    Article  Google Scholar 

  14. Honey, C.J., Kötter, R., Breakspear, M., Sporns, O.: Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc. Nat. Acad. Sci. 104(24), 10240–10245 (2007)

    Article  Google Scholar 

  15. Hu, X., Li, F., Samaras, D., Chen, C.: Topology-preserving deep image segmentation. In: Advances in Neural Information Processing Systems (2019)

    Google Scholar 

  16. Kang, H., Ombao, H., Fonnesbeck, C., Ding, Z., Morgan, V.L.: A Bayesian double fusion model for resting-state brain connectivity using joint functional and structural data. Brain Connectivity 7(4), 219–227 (2017)

    Article  Google Scholar 

  17. Lee, H., Kang, H., Chung, M.K., Kim, B.N., Lee, D.S.: Persistent brain network homology from the perspective of dendrogram. IEEE Trans. Med. Imag. 31(12), 2267–2277 (2012)

    Article  Google Scholar 

  18. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: International Conference on Computer Vision, pp. 1482–1489. IEEE (2005)

    Google Scholar 

  19. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: Advances in Neural Information Processing Systems, pp. 1114–1122 (2009)

    Google Scholar 

  20. Marchese, A., Maroulas, V.: Signal classification with a point process distance on the space of persistence diagrams. Adv. Data Anal. Classification 12(3), 657–682 (2017). https://doi.org/10.1007/s11634-017-0294-x

    Article  MathSciNet  MATH  Google Scholar 

  21. McKay, D., et al.: Influence of age, sex and genetic factors on the human brain. Brain Imag. Behav. 8(2), 143–152 (2013). https://doi.org/10.1007/s11682-013-9277-5

    Article  Google Scholar 

  22. Munkres, J.R.: Elements of Algebraic Topology. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  23. Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 435–446. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_37

    Chapter  Google Scholar 

  24. Smit, D., Stam, C., Posthuma, D., Boomsma, D., De Geus, E.: Heritability of small-world networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum. Brain Map. 29, 1368–1378 (2008)

    Article  Google Scholar 

  25. Songdechakraiwut, T., Chung, M.K.: Dynamic topological data analysis for functional brain signals. In: 17th International Symposium on Biomedical Imaging Workshops, pp. 1–4. IEEE (2020)

    Google Scholar 

  26. Surampudi, S.G., Naik, S., Surampudi, R.B., Jirsa, V.K., Sharma, A., Roy, D.: Multiple kernel learning model for relating structural and functional connectivity in the brain. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  27. Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002)

    Article  Google Scholar 

  28. Van Essen, D.C., et al.: The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  29. Xia, K., Wei, G.W.: Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numerical Methods Biomed. Eng. 30(8), 814–844 (2014)

    Article  MathSciNet  Google Scholar 

  30. Xue, W., Bowman, F.D., Pileggi, A.V., Mayer, A.R.: A multimodal approach for determining brain networks by jointly modeling functional and structural connectivity. Front. Comput. Neurosci. 9, 22 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Shih-Gu Huang (National University of Singapore) and Gregory Kirk (University of Wisconsin–Madison) for assistance in preprocessing fMRI data. This study is funded by NIH R01 EB022856, EB02875, EB022574 and NSF MDS-2010778.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tananun Songdechakraiwut .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 189 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Songdechakraiwut, T., Shen, L., Chung, M. (2021). Topological Learning and Its Application to Multimodal Brain Network Integration. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12902. Springer, Cham. https://doi.org/10.1007/978-3-030-87196-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87196-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87195-6

  • Online ISBN: 978-3-030-87196-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics