Skip to main content

Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12901))

Abstract

Retinal vessel segmentation from retinal images is an essential task for developing the computer-aided diagnosis system for retinal diseases. Efforts have been made on high-performance deep learning-based approaches to segment the retinal images in an end-to-end manner. However, the acquisition of retinal vessel images and segmentation labels requires onerous work from professional clinicians, which results in smaller training dataset with incomplete labels. As known, data-driven methods suffer from data insufficiency, and the models will easily over-fit the small-scale training data. Such a situation becomes more severe when the training vessel labels are incomplete or incorrect. In this paper, we propose a Study Group Learning (SGL) scheme to improve the robustness of the model trained on noisy labels. Besides, a learned enhancement map provides better visualization than conventional methods as an auxiliary tool for clinicians. Experiments demonstrate that the proposed method further improves the vessel segmentation performance in DRIVE and CHASE\(\_\)DB1 datasets, especially when the training labels are noisy. Our code is available at https://github.com/SHI-Labs/SGL-Retinal-Vessel-Segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    skeleton-tracing: https://github.com/LingDong-/skeleton-tracing.

References

  1. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual u-net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)

    Article  Google Scholar 

  2. Brand, C.S.: Management of retinal vascular diseases: a patient-centric approach. Eye 26(2), S1–S16 (2012)

    Article  Google Scholar 

  3. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed. Eng. 59(9), 2538–2548 (2012)

    Article  Google Scholar 

  4. Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)

    Google Scholar 

  5. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)

  6. Guo, C., Szemenyei, M., Yi, Y., Wang, W., Chen, B., Fan, C.: Sa-unet: Spatial attention u-net for retinal vessel segmentation. arXiv preprint arXiv:2004.03696 (2020)

  7. Han, B., et al.: Co-teaching: Robust training of deep neural networks with extremely noisy labels. arXiv preprint arXiv:1804.06872 (2018)

  8. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  9. Jiang, L., Zhou, Z., Leung, T., Li, L.J., Fei-Fei, L.: Mentornet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2304–2313. PMLR (2018)

    Google Scholar 

  10. Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: Dunet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  11. Lan, Y., Xiang, Y., Zhang, L.: An elastic interaction-based loss function for medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 755–764. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_73

    Chapter  Google Scholar 

  12. Li, L., Verma, M., Nakashima, Y., Nagahara, H., Kawasaki, R.: Iternet: retinal image segmentation utilizing structural redundancy in vessel networks. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 3656–3665 (2020)

    Google Scholar 

  13. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical imaging 2004: Image Processing, vol. 5370, pp. 648–656. International Society for Optics and Photonics (2004)

    Google Scholar 

  14. Oloumi, F., Rangayyan, R.M., Oloumi, F., Eshghzadeh-Zanjani, P., Ayres, F.J.: Detection of blood vessels in fundus images of the retina using gabor wavelets. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6451–6454. IEEE (2007)

    Google Scholar 

  15. Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł., Hinton, G.: Regularizing neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548 (2017)

  16. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  17. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Shu, Y., Wu, X., Li, W.: LVC-Net: medical image segmentation with noisy label based on local visual cues. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 558–566. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_62

    Chapter  Google Scholar 

  20. Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convolutional neural networks applied to visual document analysis. In: Icdar, vol. 3 (2003)

    Google Scholar 

  21. Song, H., Kim, M., Park, D., Lee, J.G.: Learning from noisy labels with deep neural networks: A survey. arXiv preprint arXiv:2007.08199 (2020)

  22. Sorensen, T.A.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commons. Biol. Skar. 5, 1–34 (1948)

    Google Scholar 

  23. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  24. Wang, W., Zhong, J., Wu, H., Wen, Z., Qin, J.: RVSeg-Net: an efficient feature pyramid cascade network for retinal vessel segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 796–805. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_77

    Chapter  Google Scholar 

  25. Xu, R., Liu, T., Ye, X., Lin, L., Chen, Y.-W.: Boosting connectivity in retinal vessel segmentation via a recursive semantics-guided network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 786–795. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_76

    Chapter  Google Scholar 

  26. Xue, C., Deng, Q., Li, X., Dou, Q., Heng, P.-A.: Cascaded robust learning at imperfect labels for chest x-ray segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266, pp. 579–588. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_56

    Chapter  Google Scholar 

  27. You, X., Peng, Q., Yuan, Y., Cheung, Y.M., Lei, J.: Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recognit. 44(10–11), 2314–2324 (2011)

    Google Scholar 

  28. Zhang, M., Yu, F., Zhao, J., Zhang, L., Li, Q.: BEFD: boundary enhancement and feature denoising for vessel segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 775–785. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_75

    Chapter  Google Scholar 

  29. Zhang, S., Fu, H., Xu, Y., Liu, Y., Tan, M.: Retinal image segmentation with a structure-texture demixing network. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 765–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_74

    Chapter  Google Scholar 

  30. Zhang, T., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  31. Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836 (2018)

  32. Zhao, Y., Liu, Y., Wu, X., Harding, S.P., Zheng, Y.: Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10(4), e0122332 (2015)

    Article  Google Scholar 

  33. Zhuang, J.: Laddernet: Multi-path networks based on u-net for medical image segmentation. arXiv preprint arXiv:1810.07810 (2018)

Download references

Acknowledgement

This project has been funded by the Jump ARCHES endowment through the Health Care Engineering Systems Center. This work also utilizes resources supported by the National Science Foundation’s Major Research Instrumentation program, grant number 1725729, as well as the University of Illinois at Urbana-Champaign.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y., Yu, H., Shi, H. (2021). Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham. https://doi.org/10.1007/978-3-030-87193-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87193-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics