Skip to main content

Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)


In medical imaging, there are clinically relevant segmentation tasks where the output mask is a projection to a subset of input image dimensions. In this work, we propose a novel convolutional neural network architecture that can effectively learn to produce a lower-dimensional segmentation mask than the input image. The network restores encoded representation only in a subset of input spatial dimensions and keeps the representation unchanged in the others. The newly proposed projective skip-connections allow linking the encoder and decoder in a UNet-like structure. We evaluated the proposed method on two clinically relevant tasks in retinal Optical Coherence Tomography (OCT): geographic atrophy and retinal blood vessel segmentation. The proposed method outperformed the current state-of-the-art approaches on all the OCT datasets used, consisting of 3D volumes and corresponding 2D en-face masks. The proposed architecture fills the methodological gap between image classification and ND image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Bakas, S., et al.: Identifying the Best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. arXiv arXiv:abs/1811.02629 (2018)

  2. Bi, L., Kim, J., Kumar, A., Feng, D.: Automatic liver lesion detection using cascaded deep residual networks. arXiv arXiv:abs/1704.02703 (2017)

  3. Bilic, P., et al.: The liver tumor segmentation benchmark (LiTS). arXiv arXiv:abs/1901.04056 (2019)

  4. Chen, Q., Niu, S., Shen, H., Leng, T., de Sisternes, L., Rubin, D.L.: Restricted summed-area projection for geographic atrophy visualization in SD-OCT images. Transla. Vis. Sci. Technol. 4(5), 2 (2015).

    Article  Google Scholar 

  5. Díaz, I.G.: Incorporating the knowledge of dermatologists to convolutional neural networks for the diagnosis of skin lesions. Computer Vision and Pattern Recognition. arXiv arXiv:1703.01976 (2017)

  6. Gutman, D., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, pp. 168–172 (2018)

    Google Scholar 

  7. Han, X.: Automatic liver lesion segmentation using a deep convolutional neural network method. arXiv arXiv:abs/1704.07239 (2017)

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)

    Google Scholar 

  9. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv arXiv:abs/1502.03167 (2015)

  11. Ji, Z., Chen, Q., Niu, S., Leng, T., Rubin, D.L.: Beyond retinal layers: a deep voting model for automated geographic atrophy segmentation in SD-OCT images. Transl. Vis. Sci. Technol. 7(1), 1 (2018)

    Article  Google Scholar 

  12. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: BrainLes@MICCAI (2019)

    Google Scholar 

  13. Kavur, A.E., et al.: CHAOS challenge - combined (CT-MR) healthy abdominal organ segmentation. arXiv arXiv:abs/2001.06535 (2020)

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: CACM (2017)

    Google Scholar 

  16. Li, M., et al.: Image projection network: 3D to 2D image segmentation in octa images. IEEE Trans. Med. Imaging 39(11), 3343–3354 (2020)

    Article  Google Scholar 

  17. Liefers, B., González-Gonzalo, C., Klaver, C., van Ginneken, B., Sánchez, C.: Dense segmentation in selected dimensions: application to retinal optical coherence tomography. In: Proceedings of Machine Learning Research, London, United Kingdom, 08–10 July 2019, vol. 102, pp. 337–346. PMLR (2019)

    Google Scholar 

  18. Matsunaga, K., Hamada, A., Minagawa, A., Koga, H.: Image classification of melanoma, nevus and seborrheic keratosis by deep neural network ensemble. arXiv arXiv:abs/1703.03108 (2017)

  19. McKinley, R., Rebsamen, M., Meier, R., Wiest, R.: Triplanar ensemble of 3D-to-2D CNNs with label-uncertainty for brain tumor segmentation. In: BrainLes@MICCAI (2019)

    Google Scholar 

  20. Menegola, A., Tavares, J., Fornaciali, M., Li, L., Avila, S., Valle, E.: RECOD Titans at ISIC challenge 2017. arXiv arXiv:abs/1703.04819 (2017)

  21. Mlosek, R.K., Malinowska, S.: Ultrasound image of the skin, apparatus and imaging basics. J. Ultrasonography 13(53), 212–221 (2013).

    Article  Google Scholar 

  22. Murphy, M.J.: Tracking moving organs in real time. Semin. Radiat. Oncol. 14(1), 91–100 (2004)

    Article  Google Scholar 

  23. Orlando, J.I., et al.: REFUGE challenge: a unified framework for evaluating automated methods for glaucoma assessment from fundus photographs. Med. Image Anal. 59, 101570 (2020)

    Article  Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).

    Chapter  Google Scholar 

  25. Srivastava, R., Yow, A.P., Cheng, J., Wong, D.W.K., Tey, H.L.: Three-dimensional graph-based skin layer segmentation in optical coherence tomography images for roughness estimation. Biomed. Opt. Exp. 9(8), 3590–3606 (2018)

    Article  Google Scholar 

  26. Sun, S., Sonka, M., Beichel, R.R.: Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans. Med. Imaging 32(8), 1536–1549 (2013).

    Article  Google Scholar 

  27. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv arXiv:abs/1607.08022 (2016)

  28. Vorontsov, E., Chartrand, G., Tang, A., Pal, C., Kadoury, S.: Liver lesion segmentation informed by joint liver segmentation. 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, pp. 1332–1335 (2018)

    Google Scholar 

  29. Yalamanchili, R., et al.: Automatic segmentation of the diaphragm in non-contrast CT images. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 900–903 (2010)

    Google Scholar 

  30. Zhao, Y.-X., Zhang, Y.-M., Liu, C.-L.: Bag of tricks for 3D MRI brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 210–220. Springer, Cham (2020).

    Chapter  Google Scholar 

  31. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, Spain, vol. 11045, pp. 3–11 (2018)

    Google Scholar 

  32. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: MICCAI (2016)

    Google Scholar 

Download references


The financial support by the Austrian Federal Ministry for Digital and Economic Affairs, the National Foundation for Research, Technology and Development and the Christian Doppler Research Association is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dmitrii Lachinov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6399 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lachinov, D., Seeböck, P., Mai, J., Goldbach, F., Schmidt-Erfurth, U., Bogunovic, H. (2021). Projective Skip-Connections for Segmentation Along a Subset of Dimensions in Retinal OCT. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12901. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87192-5

  • Online ISBN: 978-3-030-87193-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics