Skip to main content

On the Quality of Compositional Prediction for Prospective Analytics on Graphs

  • Conference paper
  • First Online:
Database and Expert Systems Applications - DEXA 2021 Workshops (DEXA 2021)

Abstract

Recently, micro-learning has been successfully applied to various scenarios, such as graph optimization (e.g. power grid management). In these approaches, ad-hoc models of local data are built instead of one large model on the overall data set. Micro-learning is typically useful for incremental, what-if/prospective scenarios, where one has to perform step-by-step decisions based on local properties. A common feature of these applications is that the predicted properties (such as speed of a bus line) are compositions of smaller parts (e.g. the speed on each bus inter-stations along the line). But little is known about the quality of such predictions when generalized at a larger scale.

In this paper we propose a generic technique that embeds machine-learning for graph-based compositional prediction, that allows 1) the prediction of the behaviour of composite objects, based on the predictions of their sub-parts and appropriate composition rules, and 2) the production of rich prospective analytics scenarios, where new objects never observed before can be predicted based on their simpler parts. We show that the quality of such predictions compete with macro-learning ones, while enabling prospective scenarios. We assess our work on a real size, operational bus network data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://gitlab.inria.fr/glyan/compred.

  2. 2.

    Rennes transportation network: https://data.rennesmetropole.fr.

  3. 3.

    Data and more material is available at https://gitlab.inria.fr/glyan/compred.

  4. 4.

    More material about the bus lines is available in the README of the repository.

  5. 5.

    More information about training data in the repository.

  6. 6.

    More material is available in the public deposit.

References

  1. Altinkaya, M., Zontul, M.: Urban bus arrival time prediction: a review of computational models. IJRTE 2, 164–169 (2013)

    Google Scholar 

  2. Amirat, H., Lagraa, N., Fournier-Viger, P., Ouinten, Y.: MyRoute: a graph-dependency based model for real-time route prediction. JCM 12, 668 (2017)

    Article  Google Scholar 

  3. Barceló, J., Casas, J., García, D., Perarnau, J.: Methodological Notes on Combining Macro, Meso and Micro Simulation Models for Transportation Analysis. In: Workshop on Modeling and Simulation. Sedona, AZ (2005)

    Google Scholar 

  4. Berger-Wolf, T., Chawla, N. (eds.): Proceedings of the 2019 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, Philadelphia, PA, May 2019. https://doi.org/10.1137/1.9781611975673

  5. Burghout, W., Koutsopoulos, H., Andréasson, I.: Hybrid mesoscopic-microscopic traffic simulation. Transp. Res. Rec. J. Transp. Res. Board 1934, 218–25 (2005)

    Article  Google Scholar 

  6. Cerqueira, V., Torgo, L., Pinto, F., Soares, C.: Arbitrated ensemble for time series forecasting. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 478–494. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_29

    Chapter  Google Scholar 

  7. Cortés, C.E., Gibson, J., Gschwender, A., Munizaga, M., Zúñiga, M.: Commercial bus speed diagnosis based on GPS-monitored data. Transp. Res. Part C Emerg. Technol. 19(4), 695–707 (2011). https://doi.org/10.1016/j.trc.2010.12.008

  8. Courtois, X., Dobruszkes, F.: L’(in)efficacité des trams et bus á Bruxelles, une analyse désagrégée. Brussels Studies. La revue scientifique électronique pour les recherches sur Bruxelles / Het elektronisch wetenschappelijk tijdschrift voor onderzoek over Brussel / The e-journal for academic research on Brussels (2008). https://doi.org/10.4000/brussels.603

  9. Fernandez, R., Valenzuela, E.: A model to predict bus commercial speed. Traffic Eng. Control 44(2) (2003)

    Google Scholar 

  10. Fu, C., et al.: Link weight prediction using supervised learning methods and its application to yelp layered network. IEEE Trans. Knowl. Data Eng. 30(8), 1507–1518 (2018). https://doi.org/10.1109/TKDE.2018.2801854

    Article  Google Scholar 

  11. Hou, Y., Holder, L.B.: On graph mining with deep learning: introducing model R for link weight prediction. J. Artif. Intell. Soft Comput. Res. 9(1), 21–40 (2019). https://doi.org/10.2478/jaiscr-2018-0022

    Article  Google Scholar 

  12. Kumar, S., Spezzano, F., Subrahmanian, V.S., Faloutsos, C.: Edge weight prediction in weighted signed networks. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, pp. 221–230. IEEE, December 2016. https://doi.org/10.1109/ICDM.2016.0033

  13. Ma, X., Chen, X.: Public transportation big data mining and analysis. In: Data-Driven Solutions to Transportation Problems. Elsevier (2019)

    Google Scholar 

  14. Matsumoto, T., Sakakibara, K., Tamaki, H.: Bus line optimization using multi-agent simulation model of urban traffic behavior of inhabitants applying branch and bound techniques, pp. 234–239. IEEE, July 2015. https://doi.org/10.1109/SICE.2015.7285551

  15. Mendes-Moreira, J., Baratchi, M.: Reconciling predictions in the regression setting: an application to bus travel time prediction. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) IDA 2020. LNCS, vol. 12080, pp. 313–325. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44584-3_25

    Chapter  Google Scholar 

  16. Petersen, N.C., Rodrigues, F., Pereira, F.C.: Multi-output bus travel time prediction with convolutional LSTM neural network. Expert Syst. Appl. 120, 426–435 (2019)

    Article  Google Scholar 

  17. Pontius, R.G., Thontteh, O., Chen, H.: Components of information for multiple resolution comparison between maps that share a real variable. Environ. Ecol. Stat. 15(2), 111–142 (2008). https://doi.org/10.1007/s10651-007-0043-y

    Article  MathSciNet  Google Scholar 

  18. Robinson, S., Narayanan, B., Toh, N., Pereira, F.: Methods for pre-processing smartcard data to improve data quality. Transp. Res. Part C Emerg. Technol. 49, 43–58 (2014). https://doi.org/10.1016/j.trc.2014.10.006

  19. Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next evolution of MDE: a seamless integration of machine learning into domain modeling. SoSyM 18, 1285–1304 (2017)

    Google Scholar 

  20. Taskar, B., Wong, M.F., Abbeel, P., Koller, D.: Link prediction in relational data. Adv. Neural Inf. Process. Syst. 16, 659–666 (2003)

    Google Scholar 

  21. Thomas, H., Fouquet, F., Moawad, A., Rouvoy, R., Traon, Y.L.: GreyCat: efficient what-if analytics for data in motion at scale. IS 83, 101–117 (2019)

    Google Scholar 

  22. Treethidtaphat, W., Pattara-Atikom, W., Khaimook, S.: Bus arrival time prediction at any distance of bus route using deep neural network model. In: International Conference On Intelligent Transportation (2017)

    Google Scholar 

  23. Zaki, M., Ashour, I., Zorkany, M., Hesham, B.: Online bus arrival time prediction using hybrid neural network and Kalman filter techniques. IJMER 3, 2035–2041 (2013)

    Google Scholar 

  24. Zhang, H., Liang, S., Han, Y., Ma, M., Leng, R.: A prediction model for bus arrival time at bus stop considering signal control and surrounding traffic flow. IEEE Access 8, 127672–127681 (2020)

    Article  Google Scholar 

  25. Zhao, J., et al.: Prediction of links and weights in networks by reliable routes. Sci. Rep. 5(1), 12261 (2015). https://doi.org/10.1038/srep12261

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gauthier Lyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lyan, G., Amblard, D.G., Jezequel, JM. (2021). On the Quality of Compositional Prediction for Prospective Analytics on Graphs. In: Kotsis, G., et al. Database and Expert Systems Applications - DEXA 2021 Workshops. DEXA 2021. Communications in Computer and Information Science, vol 1479. Springer, Cham. https://doi.org/10.1007/978-3-030-87101-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87101-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87100-0

  • Online ISBN: 978-3-030-87101-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics