Skip to main content

Ankle Variable Impedance Control for Humanoid Robot Upright Balance Control

  • 479 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1409)

Abstract

Upright balance control is the most fundamental, yet essential, function of a humanoid robot to enable the performance of various tasks that are traditionally performed by human being in various unstructured environments. Such control schemes were conventionally implemented by developing accurate physical and kinematic models based on fixed torque-ankle states, which often lack robustness to external disturbing forces. This paper presents a variable impedance control method that generates the desired torques for stable humanoid robot upright balance control, to address this limitation. The robustness of the proposed method was brought by a variable parameter approach with the support of the impedance model. The variable parameter of the ankle angle is able to describe the balance state of a humanoid robot, and the proper adjustment of such parameter ensures the effectiveness of the control model. The proposed approach was applied to a humanoid robot on a moving vehicle, and the experimental results demonstrated its efficacy and robustness.

Keywords

  • Impedance control
  • Humanoid robot control
  • Balance control
  • Robotic control

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-87094-2_18
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-87094-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Mende, M., Scott, M.L., Van Doorn, J., Grewal, D., Shanks, I.: Service robots rising: how humanoid robots influence service experiences and elicit compensatory consumer responses. J. Mark. Res. 56(4), 535–556 (2019)

    CrossRef  Google Scholar 

  2. Rajasekaran, V., Aranda, J., Casals, A., Pons, J.L.: An adaptive control strategy for postural stability using a wearable robot. Robot. Auton. Syst. 16–23 (2015)

    Google Scholar 

  3. Yin, K., et al.: Artificial human balance control by calf muscle activation modelling. IEEE Access 8, 86732–86744 (2020)

    CrossRef  Google Scholar 

  4. Tokur, D., Grimmer, M., Seyfarth, A.: Review of balance recovery in response to external perturbations during daily activities. Hum. Mov. Sci. 69, 102546 (2020)

    CrossRef  Google Scholar 

  5. Vukobratovic, M., Frank, A.A., Juricic, D.: On the stability of biped locomotion. IEEE Trans. Biomed. Eng. BME-17(1), 25–36 (1970)

    Google Scholar 

  6. Al-Shuka, H.F., Corves, B., Zhu, W.-H., Vanderborght, B.: Multi-level control of zero-moment point-based humanoid biped robots: a review. Robotica 34(11), 2440–2446 (2016)

    CrossRef  Google Scholar 

  7. Shin, H.K., Kim, B.K.: Energy-efficient reference walking trajectory generation using allowable ZMP (Zero Moment Point) region for biped robots. J. Inst. Control 17(10), 1029–1036 (2011)

    Google Scholar 

  8. Azad, M., Featherstone, R.: Angular momentum based balance controller for an under-actuated planar robot. Auton. Robot. 40(1), 93–107 (2015). https://doi.org/10.1007/s10514-015-9446-z

    CrossRef  Google Scholar 

  9. Lee, S.H., Goswami, A.: A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Auton. Robot. 33(4), 399–414 (2012). https://doi.org/10.1007/s10514-012-9294-z

    CrossRef  Google Scholar 

  10. Liu, C., Ning, J., Chen, Q.: Dynamic walking control of humanoid robots combining linear inverted pendulum mode with parameter optimization. Int. J. Adv. Robot. Syst. 15(1), 1729881417749672 (2018)

    Google Scholar 

  11. Hinata, R., Nenchev, D.N.: Balance stabilization with angular momentum damping derived from the reaction null-space. In: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids) (2018)

    Google Scholar 

  12. Yang, C., Jiang, Y., Na, J., Li, Z., Cheng, L.: Finite-time convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans. Fuzzy Syst. 27(3), 574–588 (2018)

    CrossRef  Google Scholar 

  13. Fang, W., Chao, F., Lin, M.C., Yang, L., Shang, C., Zhou, C.: An improved fuzzy brain emotional learning model network controller for humanoid robots. Front. Neurorobotics, 13(2) (2019)

    Google Scholar 

  14. Yin, K., Xiang, K., Pang, M., Chen, J., Yang, L.: Personalised control of robotic ankle exoskeleton through experience-based adaptive fuzzy inference. IEEE Access 7, 72221–72233 (2019)

    CrossRef  Google Scholar 

  15. Mattioli, T., Vendittelli, M.: Interaction force reconstruction for humanoid robots. IEEE Robot. Autom. Lett. 2(1), 282–289 (2016)

    CrossRef  Google Scholar 

  16. Neville, H.: Impedance control: an approach to manipulation: part i-theory. J. Dyn. Syst. Meas. Control, 107 (1985)

    Google Scholar 

  17. Song, P., Yu, Y., Zhang, X.: A tutorial survey and comparison of impedance control on robotic manipulation. Robotica 37(5), 801–836 (2019)

    CrossRef  Google Scholar 

  18. Pang, M., Li, M., Xiang, K., Ge, Y.: Human ankle joint reflex and impedance control during upright stance balance. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 45(10), 49–53 (2017)

    Google Scholar 

  19. Li, Z., Huang, Z., He, W., Su, C.-Y.: Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Trans. Industr. Electron. 64(2), 1664–1674 (2016)

    CrossRef  Google Scholar 

  20. Li, Y., Li, M., Pang, M., Wang, J., Tong, J., Dong, E.: Analysis of dynamics properties of ankle joint during push-forward disturbance rejection. In: 2016 IEEE International Conference on Information and Automation (ICIA). IEEE, pp. 712–717 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longzhi Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Yin, K., Xue, Y., Wang, Y., Yang, L. (2022). Ankle Variable Impedance Control for Humanoid Robot Upright Balance Control. In: Jansen, T., Jensen, R., Mac Parthaláin, N., Lin, CM. (eds) Advances in Computational Intelligence Systems. UKCI 2021. Advances in Intelligent Systems and Computing, vol 1409. Springer, Cham. https://doi.org/10.1007/978-3-030-87094-2_18

Download citation