Skip to main content

Cenozoic Evolution of Antarctic Ice Sheet, Circum Antarctic Circulation and Antarctic Climate: Evidence from Marine Sedimentary Records

  • Chapter
  • First Online:
Assessing the Antarctic Environment from a Climate Change Perspective

Abstract

The last few decades have witnessed intensive studies regarding the origin and development of permanent ice sheets in Antarctica. The studies were primarily focused on determining the paleopositions of Antarctica in various plate assemblies, journey of Antarctica to the southernmost position, atmospheric carbon dioxide concentrations connected to Antarctic cooling, earliest ice-rafted debris deposition in the southern ocean, oxygen isotope composition of the marine sediments to understand ice volume, the opening of the southern ocean gateways and development of the Circum Antarctic Circulation and thermal isolation of Antarctica, meridional heat transport to Antarctica, and the response of Antarctic ice sheet to orbital forcing. All these studies point towards the fact that the Antarctic ice sheet was triggered by more than one mechanism. However, most of the studies and debates revolve around the causes for lowering of temperature rather than the causative factors that contributed to moisture for the massive ice sheets in Antarctica. Interestingly, the geological evidence for the origin and evolution of the Antarctic Ice sheet has mainly been reported from places outside Antarctica, including marine sediments deposited from southern to lower latitudes. Erosion by the probable  ice sheets on Antarctica  in the form of ice-rafted debris gives one of the earliest clues to ice near continental shelves during the Early Oligocene. Studies on the Carbon dioxide concentration point towards a lowering of CO2 levels from 3000 to 800 ppm in the Early Oligocene. A synthesis of the oxygen isotope record of foraminifera also indicates that the cooling started in the Early Oligocene. Other causative factors proposed include the opening of the southern ocean gateways and the development of circum Antarctic Current leading to the thermal isolation of Antarctica. Recent studies have revealed that the ice sheets are not inert to the global carbon cycle and have played an active role. Thus under the climate change scenario, it is essential to understand the history of the Antarctic Ice sheet. The chapter summarizes the crucial researches regarding the origin and development of the Antarctic Ice Sheet (AIS) and offers some future directions for research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alley RB et al (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529

    Google Scholar 

  • Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) onset and role of the antarctic circumpolar current. Deep-Sea Res Part II: Top Stud Ocean 54(21–22):2388–2398

    Google Scholar 

  • Barrett PJ, Florindo F, Cooper AK (2006) Introduction to “Antarctic climate evolution: view from the margin.” Palaeogeogr Palaeoclim Palaeoecol 231(1–2):1–8

    Google Scholar 

  • Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134

    Google Scholar 

  • Bond GC (1979) Evidence for late Tertiary uplift of Africa relative to North America. S Am Aust Eur: J Geol 86:47–65

    Google Scholar 

  • Breza JR, Wise S (1992) Lower oligocene ice-rafted debris of the Kerguelen Plateau: evidence for East Antarctic Continental Glaciation. In: Wise SW, Schlich R, et al (eds), Proceedings of the ocean drilling program, scientific results, college station, TX (Ocean Drilling Program), vol 120, 161–178

    Google Scholar 

  • Carter A, Riley TR, Hillenbrand C-D, Rittner M (2017) Widespread Antarctic glaciation during the Late Eocene. Earth Planet Sci Lett 58(2017):49–57

    Google Scholar 

  • Cheney ES (1996) Sequence stratigraphy and plate tectonic significance of the Transvaal succession of southern Africa and it’s equivalent in Western Australia. Precambr Res 79:3–24

    Google Scholar 

  • Christoffel D, Falconer R (1972) Marine magnetic measurement in the southwest Pacific Ocean and the identification of new tectonic features. In: Hayes D (ed) Antarctic oceanology.’ The Australian-New Zealand Sector, Antarctic Res Ser, vol 19, p 197, AGU, Washington, DC, 1972

    Google Scholar 

  • Coxall HK, Wilson PA, Pälike H, Lear CH, Backman J (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433(7021):53–57

    Google Scholar 

  • Cristini L, Grosfeld K, Butzin M, Lohmann G (2012) The influence of the opening of the Drake Passage on the Cenozoic Antarctic Ice Sheet: a modelling approach. Palaeogeogr Palaeoclim Palaeoecol 339–341:66–73

    Google Scholar 

  • Cuffey K, Clow G (1997) Temperature, accumulation, and ice sheet elevation in central Greenland through the last deglacial transition. J Geophys Res 702(26):383–26,396

    Google Scholar 

  • DeConto RM, Pollard D (2003) Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature 42:245–249

    Google Scholar 

  • Deighton l, Falvey DA, Taylor DJ (1976) Depositional environments and geotectonic framework: Southern Australian continental margin. APEA J (16.1. 25–36. 16, I 0976) 25–36. A J. 0976)

    Google Scholar 

  • Ebbing J, Haas P, Ferraccioli F, Pappa F, Szwillus W, Bouman J (2018) Earth tectonics as seen by GOCE - enhanced satellite gravity gradient imaging. Sci Rep 8(1):34733–34739

    Google Scholar 

  • Ehrmann WU (1991) Implications of sediment composition on the southern Kerguelen Plateau for paleoclimate and depositional environment. In Proc. ODP sci result, vol 119, pp 185–210

    Google Scholar 

  • Ehrmann WU, Mackensen A (1992) Sedimentological evidence for forming an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeogr Palaeoclim Palaeoecol 93:85–112

    Google Scholar 

  • Eldrett JS, Harding IC, Wilson PA, Butler E, Roberts AP (2007) Continental ice in Greenland during the Eocene and Oligocene. Nature 446:176–179

    Google Scholar 

  • Elliot DH (1975) The tectonics of Antarctica. Am J Sci A275:45–106

    Google Scholar 

  • Evans DAD, Mitchell RN (2011) assembly and the breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna. Geology 39:443–446

    Google Scholar 

  • Florindo F, Wilson GS, Roberts AP, Sagnotti L, Verosub KL (2005) Magnetostratigraphic chronology of a late Eocene to early Miocene glacimarine succession from the Victoria Land Basin, Ross Sea. Antarctica. Glob Planet Chang 45(1):207–236

    Google Scholar 

  • Flower B, Kennett JP (1995) Middle Miocene deepwater paleoceanography in the southwest Pacific: relations with East Antarctic Ice Sheet development. Paleoceano Paleoclimate 10(6):1095–1112

    Google Scholar 

  • Galeotti S, DeConto R, Naish T, Stocchi P, Florindo F, Pagani M, Zachos JC (2016) Antarctic Ice Sheet variability across the Eocene-Oligocene boundary climate transition. Science 352(6281):76–80

    Google Scholar 

  • Ghavri S, Catherine JK, Ambikapathy A, Kumar A, Gahalaut V (2017) Antarctica plate motion. Proc Indian Natn Sci Acad 83(2):437–440

    Google Scholar 

  • Gildor H, Tziperman E (2000) Sea ice as the glacial cycles climate switch: role of seasonal and Milankovitch forcing. Paleoceanography 15(6):605–615

    Google Scholar 

  • Gildor H (2003) When earth’s freezer door is left Ajar Eos, vol 84, No. 2, 3

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012, 1176 p

    Google Scholar 

  • Grew ES, Manton WI (1979) Archean rocks in Antarctica: 2.5 billion year Uranium led ages of pegmatites in Enderby Land. Science 206(4417):443–445

    Google Scholar 

  • Grunow AM, Kent DV, Dalziel IWD (1991) New paleomagnetic data from Thurston Island: Implications for the tectonics of West Antarctica and the Weddell Sea opening. J Geophys Res 96:17935–17954

    Google Scholar 

  • Hambrey MJ, Ehrmann W, Larsen B (1991) Cenozoic glacial record of the Prydz Bay continental shelf, East Antarctica. In: Barron J, Larsen B, et al (Eds), Proceedings of the ocean drilling program: scientific results, vol 119 (pp 77–132). College Station, TX: Ocean Drilling Program

    Google Scholar 

  • Harley SL, Fitzsimons IC, Zhao Y (2013) Antarctica and supercontinent evolution: historical perspectives, recent advances and unresolved issues. Geol Soc Lond Spec Publ 383:1–34

    Google Scholar 

  • Haug GH, Tiedemann R (1998) The effect of the formation of the isthmus of Panama on Atlantic thermohaline circulation. Nature 393:673–676

    Google Scholar 

  • Hollis CJ, Tayler MJS, Andrew B, Taylor KW, Lurcock P, Bijl PK, Kulhanek DK, Crouch EM, Nelson CS, Pancost RD, Huber M, Wilson GS, Todd GV, Crampton JS, Schiøler P, Phillips A (2014) Organic-rich sedimentation in the South Pacific Ocean associated with Late Paleocene climatic cooling. Earth Sci Rev 134:81–97

    Google Scholar 

  • Huber M, Nof D (2006) The ocean circulation in the Southern Hemisphere and its climatic impacts in the Eocene. Palaeogeogr Palaeoclim Palaeoecol 231:9–28

    Google Scholar 

  • Hyland EG, Sheldon ND, Cotton JM (2017) Constraining the early Eocene climatic optimum: a terrestrial interhemispheric comparison. Geol Soc Am Bull 129(1–2):244–252

    Google Scholar 

  • Ivany LC, Van Simaeys S, Domack EW, Samson SD (2006) Evidence for an earliest Oligocene ice sheet Antarctic Peninsula. Geology 34(5):377–380

    Google Scholar 

  • Jenkins DG (1974) Initiation of the Proto Cicum Antarctic current. Nature 252(5482):371–373

    Google Scholar 

  • Jones DL, Bates MP, Li Z-X, Corner B, Hodgkinson G (2003) Palaeomagnetic results from the ca. 1130 Ma Borgmassivet intrusions in the Ahlmannryggen region of Dronning Maud Land, Antarctica, and tectonic implications. Tectonophysics 375:247–260

    Google Scholar 

  • Katz ME, Cramer BS, Toggweiler JR, Esmay G, Liu C, Miller KG, Rosenthal Y, Wade BS, Wright JD (2011) Impact of Antarctic Circumpolar Current development on late Paleogene ocean structure. Science 332:1076–1079

    Google Scholar 

  • Kennett JP, Exon NF (2004) Paleoceanographic evolution of the Tasmanian Seaway and its climatic implications. Geophys Monogr Ser 345–367

    Google Scholar 

  • Kennett JP, Houtz RE, Andrews PB, Edwards AR, Gostin VA, Hajos M, Hampton MA, Jenkins DG, Margolis SV, Ovenshine AT, Perch-Nielsen KC (1975) Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciations and the development of the circum-Antarctic current, in Initial Reports of the Deep Sea Drilling Project, vol 29, p 1155, US Govt Printing Office Washington DC

    Google Scholar 

  • Kennett JP (1977) Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean and their Impact on Global Paleoceanography. J Geophys Res 82(27):3843–3859

    Google Scholar 

  • Kennett JP, Barker PF (1990) Latest Cretaceous to Cenozoic climate and oceanographic developments in the Weddell Sea, Antarctica: an ocean-drilling perspective. In: Kennett JP, et al. Proceedings of the ocean drilling program, scientific results, vol. 113. College Station, Texas, Ocean Drilling Program, pp 937–960

    Google Scholar 

  • Kent DV, Gradstein FM (1986) A Jurassic to recent geochronology, in the geology of North America, vol M. The Western North Atlantic Region, edited by Vogt PR, Tucholke BE, pp 45–50, Geological Society of America, Boulder, Colo., 1986

    Google Scholar 

  • Lawrence RD, Khan SH, Nakata T (1992) Chaman fault, Pakistan-Afghanistan: Ann. Tectonicae, v. Spec. Issue. - Suppl. to vol. VI, pp 196–223

    Google Scholar 

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum Antarctic region. Paleogeogr Paleoclimate Paleoecology 198:11–37

    Google Scholar 

  • Le-Treut H, Ghil M (1983) Orbital forcing, climatic interactions, and glaciation cycles. J Geophys Res: Ocean 88(C9):5167–5190

    Google Scholar 

  • Livermore R, Hillenbrand C-D, Meredith M, Eagles G (2007) Drake Passage and Cenozoic climate: an open and shut case? Geochem Geophys Geosystems 8(1)

    Google Scholar 

  • Lourious C, Merlivat L, Jouzel J, Pourchet M (1979) A 30,000-yr isotope climatic record from Antarctic ice. Nature 280:644–648

    Google Scholar 

  • Lowrie W, Hayes DE (1975) Magnetic properties of oceanic basalt samples in Initial Reports of the Deep Sea Drilling Project, vol 28, p 869, US Government Printing Office, Washington DC

    Google Scholar 

  • Lurcock P, Florindo F (2017) Antarctic climate history and global climate changes. Oxford Handbooks Online (www.oxfordhandbooks.com). Oxford University Press, 2018

  • Lyle M, Gibbs S, Moore TC, Rea DK (2007) Late oligocene initiation of the antarctic circumpolar current: evidence from the South Pacific. Geology 35(8):691

    Google Scholar 

  • Marenssi SA, Casadío S, Santillana SN (2010) Record of Late Miocene glacial deposits on Isla Marambio (Seymour Island) Antarctic Peninsula. Antarct Sci 22(2):193–198

    Google Scholar 

  • Marschall HR, Hawkesworth CJ, Storey CD, Dhuime B, Leat PT, Meyer HP, Tamm-Buckle S (2010) The Annandagstoppane Granite, East Antarctica: evidence for Archaean intracrustal recycling in the Kaapvaal Grunehogna Craton from zircon O and Hf isotopes. J Petrol 51(11):2277–2301

    Google Scholar 

  • Maslin MA, Li XS, Loutre M-F, Berger A (1998) The contribution of orbital forcing to the progressive intensification of northern hemisphere glaciations. Quatern Sci Rev 17(4–5):411–426

    Google Scholar 

  • McElhinny MW (1973) Palaeomagnetism and plate tectonics. Cambridge University Press, New York

    Google Scholar 

  • Miller KG, Wright JD, Fairbanks RG (1991) Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. J Geophys Res: Solid Earth 96(B4):6829–6848

    Google Scholar 

  • Miller KG, Fairbanks RG, Mountain GS (1987) Tertiary oxygen isotope synthesis, sea-level history and continental margin erosion. Paleoceanography 2:1–19

    Google Scholar 

  • Pälike H, Norris RN, Herrle J, Wilson PA, Coxall HK, Lear CH, Shackleton NJ, Tripati AK, Wade BS (2006) The heartbeat of the Oligocene climate system. Science 314:1894–1898

    Google Scholar 

  • Payne JL, Hand M, Barovich KM, Reid A, Evans DAD (2009) Correlations and reconstruction models for the 2500–1500 Ma evolution of the Mawson Continent. In: Reddy SM, Mazumder R, Evans DAD, Collins AS (eds) Palaeoproterozoic supercontinents and global evolution. Geological Society, London, Special Publications, vol 323, pp 319–355

    Google Scholar 

  • Payros A, Ortiz S, Millán I, Arostegi J, Orue-Etxebarria X, Apellaniz E (2015) Early Eocene climatic optimum: environmental impact on the North Iberian continental margin. Geol Soc Am Bull 127(11–12):1632–1644

    Google Scholar 

  • Pearson PN, Palmer (2000) Atmospheric carbon dioxide concentrations over the last 60 million years. Nature 406:695–699

    Google Scholar 

  • Phillips G, Wilson CJL, Campbell IH, Allen CM (2006) U-Th–Pb detrital zircon geochronology from the southern Prince Charles Mountains, East Antarctica – defining the Archaean to Neoproterozoic Ruker Province. Precambr Res 148:292–306

    Google Scholar 

  • Poore RJ, Sloan LC (1996) Climates and climate variability of the Pliocene. Mar Micropal 27:326

    Google Scholar 

  • Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Brinkhuis H (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488(7409):73–77

    Google Scholar 

  • Reddy SM, Evans DAD (2009) Palaeoproterozoic supercontinents and global evolution: correlations from the core to atmosphere. In: Reddy SM, Mazumder R, Evans DAD, Collins AS (eds) Palaeoproterozoic supercontinents and global evolution. Geological Society, London, Special Publications, vol 323, pp 1–26

    Google Scholar 

  • Roberts AP, Wilson GS, Harwood DM, Verosub KL (2003) Glaciation across the Oligocene-Miocene boundary in southern McMurdo Sound, Antarctica: New chronology from the CIROS-1 drill hole. Palaeogeogr Palaeoclim Palaeoecol 198(1):113–130

    Google Scholar 

  • Roberts DG, Morton AC, Backman J (1984) Late Paleocene-Eocene Volcanic events in the northern North Atlantic ocean Init. Reports. DSDP, 81: Washington (US Govt. Printing Office)

    Google Scholar 

  • Rogers JJ (1993) India and Ur. Geol Soc India 42(3):217–222

    Google Scholar 

  • Ruddiman WF, Mclntyre A (1981) Oceanic mechanisms for amplification of the 23,000-year

    Google Scholar 

  • Sagnotti L, Kenneth V, Andrew R, Wilson GS et al (2001) Environmental magnetic record of the Eocene-Oligocene transition in CRP-3 drillcore. Victoria Land Basin, Antarctica, Terra Antarctica 8(4):507–516

    Google Scholar 

  • Savin SM, Barrera E (1985) Cenozoic ocean temperatures inferred from 18O/16O ratios of foraminifera abst Geol Soc. Am Abst Programs 17(7):707

    Google Scholar 

  • Savin SM, Douglas RG, Stehli FG (1975) Tertiary marine paleotemperatures. Geol Soc Am Bull 86(11):1499

    Google Scholar 

  • Scher HD, Martin EE (2006 Apr 21) (2006), timing and climatic consequences of the opening of drake passage. Science 312(5772):428–430

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Initial Reports of the Deep Sea Drilling Project, vol 29, pp 801–807

    Google Scholar 

  • Sobotovich EV, Kamenev VN, Kornanstyy AA, Rudnik VA (1976) The oldest rocks of Antarctica (Enderby Land). Int Geol Rev 18(4):371–388. https://doi.org/10.1080/00206817609471218

    Article  Google Scholar 

  • Srinivasan MS, Sinha DK (1998) Early Pliocene closing of the Indonesian seaway: evidence from the North-East Indian Ocean and Tropical Pacific deep-sea cores. J Asian Earth Sci 16(1):29–44

    Google Scholar 

  • Stuiver M, Braziunas TF (1985) Compilation of isotopic dates from Antarctica. Radiocarbon 27(2A):117–304. https://doi.org/10.1017/s0033822200007037

    Article  Google Scholar 

  • Tigchelaar M, von der Heydt AS, Dijkstra HA (2011) (2011) A new mechanism for the two-step δ 18O signal at the Eocene-Oligocene boundary. Clim Past 7:235–247

    Google Scholar 

  • Tingey RJ (1991) The regional geology of Archaean and Proterozoic rocks in Antarctica. In: Tingey RJ (ed) The Geology of Antarctica. Oxford University Press, Oxford, pp 1–73

    Google Scholar 

  • Tripati AK, Eagle RA, Morton A, Dowdeswell JA, Atkinson KL, Bahé Y, Thanabalasundaram L (2008) Evidence for glaciation in the Northern Hemisphere back to 44 Ma from ice-rafted debris in the Greenland Sea. Earth Planet Sci Lett 265(1–2):112–122. https://doi.org/10.1016/j.epsl.2007.09.045

    Article  Google Scholar 

  • van der Veen CJ (2002) Polar ice sheets and global sea level: how well can we predict the future? Global Planet Change 32:165–194

    Google Scholar 

  • Vaughan APM, Livermore RA (2005) Episodicity of Mesozoic terrane accretion along the pacific margin of Gondwana: implications for superplume plate interactions. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margin of Gondwana. Geological Society, London, Special Publications, vol 246, pp 143–178

    Google Scholar 

  • Veevers JJ (2012) Reconstructions before rifting and drifting reveal the geological connections between Antarctica and its conjugates in Gondwanaland. Earth Sci Rev 111:249–318

    Google Scholar 

  • Vincent E, KillingIcy JS, Berger WH (1985) Miocene oxygen and carbon isotope stratigraphy of the tropical Indian Ocean, in The Miocene Ocean: paleoceanography and biogeography, edited by J.P. Kennett. Mem Geol Soc Am 163:103–130

    Google Scholar 

  • Wadham JL, Hawkings JR, Tarasov L, Gregoire LJ, Spencer RGM, Gutjahr M, Ridgwell A, Kohfeld KE (2019) Ice sheets matter for the global carbon cycle. Nat Commun 10(1)

    Google Scholar 

  • Webb PN (1962) Isotope dating of Antarctic rocks NZ. J Geol Geophys 5(5):790–796

    Google Scholar 

  • Wilson GS, Roberts AP, Verosub KL, Florindo F, Sagnotti L (1998) Magnetobiostratigraphic chronology of the Eocene-Oligocene transition in the CIROS-1 core, Victoria Land margin, Antarctica: implications for Antarctic glacial history. Geol Soc Am Bull 110(1):35–47

    Google Scholar 

  • Wilson DS, Pollard D, DeConto RM, Jamieson SSR, Luyendyk BP (2013) Initiation of the West Antarctic ice sheet and estimation of total Antarctic volume in the earliest Oligocene. Geophys Res Lett 40:4305–4309

    Google Scholar 

  • Wilson DS, Pollard D, DeConto RM, Stewart SRJ, Luyendyk BP (2013) Initiation of the West Antarctic Ice Sheet and estimates of total Antarctic ice volume in the earliest Oligocene. Geophys Res Lett 40:4305–4309. https://doi.org/10.1002/grl.50797

    Article  Google Scholar 

  • Wright JD, Miller KG, Fairbanks RG (1992) the evolution of modern deepwater circulation: evidence from the late Miocene Southern Ocean. Paleoceanography 6:275–290

    Google Scholar 

  • Wright JD, Miller KG (1993) Southern ocean influences late Eocene to Miocene deepwater circulation. Antarct Res Ser 60:1–25

    Google Scholar 

  • Yakubchuk AS (2019) From Kenorland to modern continents: tectonics and metallogeny. Geotektonika 2:3–32

    Google Scholar 

  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693

    Google Scholar 

  • Zachos JC, Lohmann KC, Walker JCG, Wise SW (1993) Abrupt climate change and transient climates during the Paleogene: a marine perspective. J Geol 101:191–213

    Google Scholar 

  • Zhao G, Sun M, Wilde SA, Li S (2004) A Paleo- Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Google Scholar 

Download references

Acknowledgements

AKS and DKS thank the Delhi School of Climate Change and Sustainability (DSCCS) of the Institution of Eminence (IoE) and the Department of Geology, University of Delhi, for providing infrastructural support. Financial assistance from the Ministry of Earth Sciences, Govt of India (Sanction No. MoES/CCR/Paleo-4/2019 ) is thankfully acknowledged. Other authors (KM, VPS, AS, TK) thank their respective institutions for logistic help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devesh K. Sinha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A.K., Sinha, D.K., Pratap Singh, V., Mallick, K., Shrivastava, A., Kaushik, T. (2022). Cenozoic Evolution of Antarctic Ice Sheet, Circum Antarctic Circulation and Antarctic Climate: Evidence from Marine Sedimentary Records. In: Khare, N. (eds) Assessing the Antarctic Environment from a Climate Change Perspective. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-030-87078-2_4

Download citation

Publish with us

Policies and ethics