Skip to main content

Revealing the Contemporary Kinematics of Antarctic Plate Using GPS and GRACE Data

  • Chapter
  • First Online:
Assessing the Antarctic Environment from a Climate Change Perspective

Part of the book series: Earth and Environmental Sciences Library ((EESL))

  • 519 Accesses

Abstract

Revised horizontal and vertical plate velocities of the Antarctic continent in ITRF2008 and the impact of elastic and viscoelastic deformations over the continent due to Antarctic Ice Sheet (AIS) variations are simultaneously estimated using GPS and GRACE data for the period 2005–2015. The improved GPS time series and resulting horizontal and vertical velocities indicate that East Antarctica is subsiding significantly, whereas West Antarctica is experiencing uplift with transitional subsidence along the Trans-Antarctic Mountain ranges. According to the ongoing elastic deformation and AIS mass variations from GRACE data, the East Antarctic area is subsiding at a rate of 1 mm/yr. The elastically corrected or GRACE corrected vertical deformation also exposes the deformation patterns associated with the viscoelastic vertical deformation in terms of East Antarctica subsidence and West Antarctica upliftment. The GIA model values also agree well with elastically corrected vertical motions when validated with elastically uncorrected and corrected GPS vertical velocities. Hence we reveal that the outcome of the elastically corrected vertical deformation in the Antarctic region is very well connected to the long-term viscoelastic changes akin to AIS mass variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altamimi Z, Collilieux X, Metivier L (2011) ITRF2008: An improved solution of the international terrestrial reference frame. J Geod 85(8):457–473. https://doi.org/10.1007/s00190-011-0444-4

    Article  Google Scholar 

  • Argus DF, Heftin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the global positioning system. Geophys Res Lett 22:1973–1976

    Article  Google Scholar 

  • Argus DF, Peltier WR (2010) Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives. Geophys J Int 181:697–723

    Google Scholar 

  • Argus DF, Peltier WR, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198:537–563

    Article  Google Scholar 

  • Behrendt J (1999) Crustal and lithospheric structure of the West Antarctic rift system from geophysical investigations: a review. Global Planet Change 23(1–4):25–44

    Article  Google Scholar 

  • Bevis M, Kendrick E, Smalley R Jr, Ian D et al (2009) Geodetic measurements of vertical crustal velocity in West Antarctica and the implications for ice mass balance. Geochem Geophys Geosys 10:Q10005. https://doi.org/10.1029/2009GC002642

    Article  Google Scholar 

  • Bohem J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range weather forecasts operational analysis data. J Geophys Res - Solid Earth 111(B2):B2406

    Google Scholar 

  • Blewitt,G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107(B7:ETG 9–1–ETG 9–11). https://doi.org/10.1029/2001JB000570

  • Bouin M-N, Vigny C (2020) New constrains on Antarctic plate motion and deformation from GPS data. J Geophys Res 105-B12:28279–28293

    Google Scholar 

  • DeMets C, Gordon RG, Argus D, Stein S (1990) Current plate motions. Geophys J Int 101:425-478

    Google Scholar 

  • Denton G, Prentice ML, Burckle LH (1991) Cainozoic history of the Antarctic ice-sheet. In: Tingey RJ (ed) Geology of Antarctica. Oxford Univ Press, New York, pp 365–433

    Google Scholar 

  • Dietrih R, Rülke A, Ihde J et al (2004) Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Glob Planet Ch 42:313–321

    Article  Google Scholar 

  • Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys 10:761–797

    Article  Google Scholar 

  • Gharavi S, Catherine JK, Ambikapathy A, Kumar A, Gahalaut VK (2017) Antarctica Plate Motion. Proc Indian Natn Sci Acad 83(2):437–440

    Google Scholar 

  • Groh A et al (2012) An investigation of glacial isostatic adjustment over the Amundsen Sea Sector, West Antarctica. Global Planet Change 98:45–53. https://doi.org/10.1016/j.gloplacha.2012.08.001

    Article  Google Scholar 

  • Grunow AM (1993) New paleomagnetic data from the Antarctic Peninsula and their tectonic implications. J Geophys Res. https://doi.org/10.1029/93JB01089

    Article  Google Scholar 

  • Hattori A, Aoyama Y, Okuno J, Doi K (2021) GNSS Observations of GIA-Induced Crustal Deformation in Lützow-Holm Bay, East Antarctica. Geophys Ress Lett 48:e2021GL093479. https://doi.org/10.1029/2021GL093479

  • Hayes DE (1991) Tectonics and age of the oceanic crust: circumAntarctic to 300S. In: Hayes DE (ed) Marine geological and geophysical atlas of the circum-Antarctic to 300S. American Geophysical Union, Washington, D.e, pp 47–56

    Chapter  Google Scholar 

  • Herring TA (2003) MATLAB Tools for viewing GPS velocities and time series. GPS Solutions 7(3):194–199. https://doi.org/10.1007/s10291-003-0068-0

    Article  Google Scholar 

  • Herring TA 2005) GLOBK, Global Kalman filter VLBI and GPS analysis program, Version 10.2, Report, Department of Earth, Atmospheric and Planetary Sciences, Massachussetts Institute of Technology.

    Google Scholar 

  • Huybrechts P (1994) Formation and disintegration of the Antarctic ice sheet. Ann. Giaciol. 20:336–340

    Article  Google Scholar 

  • King MA, Penna NT, Clarke PJ (2005) Validation of ocean tide models around Antarctica using onshore GPS and gravity data. J Gophys Res 110:B08401. https://doi.org/10.1029/2004JB003390

    Article  Google Scholar 

  • King MA, Bingham RJ, Moore P, Whitehouse PL, Bentley MJ, Milne GA (2012) Lower satellite-gravimetry estimates of Antarctic sea-level contribution. Nature 491(7425):586

    Article  Google Scholar 

  • King MA, Whitehouse PL, van der Wal W (2016) Incomplete separability of Antarctic plate rotation from glacial isostatic adjustment deformation within geodetic observations. Geophy J Int 204:324–330

    Article  Google Scholar 

  • King RW, Bock Y (2005) Documentation of the GAMIT GPS Analysis Software, Massachusetts Institute of Technology.

    Google Scholar 

  • Li W, Li F, Zhang S, et al. (2019) An assessment of GIA solutions based on high-precision GNSS velocity field for Antarctica. Solid Earth Discuss [preprint]. https://doi.org/10.5194/se-2019-101

  • Lemoine J-M, Bruinsma S, Gégout P, Biancale R, Bourgogle S (2013) Release 3 of the GRACE gravity solutions from CNES/CRGS. Geophys Res Abstracts. 15(EGU2013-11123):2013

    Google Scholar 

  • Morelli A, Danesi S (2004) Seismological imaging of the Antarctic continental lithosphere: a review. Global and Plan Ch 42(1–4):155–165

    Article  Google Scholar 

  • Nikolaidis R (2002) Observation of geodetic and seismic deformation with the Global Positioning System. Ph.D. thesis Univ of Calif, San Diego San Diego

    Google Scholar 

  • Ohzono M, Tabei T, Doi K, Shibuya K, Sagiya T (2006) Crustal movement of Antarctica and Syowa based on GPS measurements. Earth Planet Space 58:795–804

    Google Scholar 

  • Swenson S, Chambers D, Wahr J (2008) Estimating geocenter variations from a combination of GRACE and ocean model output. J Geophys Res - Solid Earth 113:B8

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth System. Science 305(5683):503–505. https://doi.org/10.1126/science.1099192

    Article  Google Scholar 

  • Ten Brink US, Hackney RI, Bannister S et al (1997) Uplift of the transantarctic mountains and the bedrock beneath the East Antarctic ice sheet. J Geophys Res 102(B12):27603–27621

    Article  Google Scholar 

  • Thomas ID, King MA, Bentley MJ, Whitehouse PL, Penna NT, Williams SDP, et al. (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38(22). L22302. https://doi.org/10.1029/2011GL049277

  • Thomas ID, King MA, Bentley MJ, Whitehouse PL et al (2011) Widespread low rates of Antarctic glacial isostatic adjustment revealed by GPS observations. Geophys Res Lett 38:L22302

    Google Scholar 

  • Tian Y (2011) iGPS: IDL tool package for GPS position time series analysis. GPS Sol 15(3): 299–303. https://doi.org/10.1007/s10291-011-0219-7

  • Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Gacial isostatic adjustment and non stationary signals observed by GRACE. J Geophys Res 114:B06406. https://doi.org/10.1029/2008JB006161

    Article  Google Scholar 

  • van Dam T (2010) NCEP derived 6 hourly, global surface displacements at 2.5 × 2.5 degree spacing. [Available at http://geophy.uni.lu/ncep-loading.html]

  • van Dam T, Collilieux X, Wuite J, Altamimi Z, Ray J (2012) Nontidal ocean loading effects in GPS height time series. J Geodyn https://doi.org/10.1007/s00190-012-0564-5

  • van Dam TM, Wahr JM (1987) Displacements of the Earth’s surface due to atmospheric loading: Effects on gravity and baseline measurements. J Geophys Res 92(B2):1281–1286. https://doi.org/10.1029/JB092iB02p01281

    Article  Google Scholar 

  • Velicogna I, Mohajerani Y, Landerer F, Mouginot J, Noel B, Rignot E, et al. (2020). Continuity of ice sheet mass loss in Greenland and Antarctica from the GRACE and GRACE follow-on missions. Geophys Res Lett 47(8):e2020GL87291. https://doi.org/10.1029/2020GL087291

  • Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229. https://doi.org/10.1029/98JB02844

    Article  Google Scholar 

  • Wdowinski S, Bock Y, Zhang J, Fang P, Genrich J (1997) Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J Geophys Res 102(B8):18057–18070. https://doi.org/10.1029/97JB01378

    Article  Google Scholar 

  • Williams SDP, Moore P, King MA, Whitehouse PL (2014) Revisiting GRACE Antarctic ice mass trends and accelerations considering autocorrelation. Earth Planet Sci Lett 385:12–21

    Article  Google Scholar 

  • Zanutta A, Negusini M, Vittuari L et al (2018) New geodetic and gravimetric maps to infer geodynamics of antarctica with insights on Victoria Land. Remote Sens 10:1608. https://doi.org/10.3390/rs10101608

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sunil, P.S., Saji, A.P., Kumar, K.V., Ponraj, M., Amirtharaj, S., Dhar, A. (2022). Revealing the Contemporary Kinematics of Antarctic Plate Using GPS and GRACE Data. In: Khare, N. (eds) Assessing the Antarctic Environment from a Climate Change Perspective. Earth and Environmental Sciences Library. Springer, Cham. https://doi.org/10.1007/978-3-030-87078-2_18

Download citation

Publish with us

Policies and ethics