Abstract
The Discrete Event System Specification (DEVS) is a modeling formalism that supports a general methodology for describing discrete event systems with the capability to represent continuous, discrete, and hybrid systems due to its system theoretic basis. In this chapter, we discuss the use of DEVS as the basic modeling and simulation framework for Model-Based System Engineering methodology that supports the critical stages in a top down design of complex networks. Focusing on the design of communication networks for emergency response, we show how such networks pose challenges to current technologies that current simulators cannot address. This sets the stage for considering how the DEVS formalism supports the required phases of top down design and the transitions from one phase to the next. After describing the proposed DEVS-based system engineering methodology in depth, we conclude with a discussion of the current state of its application, also mentioning open research needed to bring it into general practice.
Keywords
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
Each entry is defined as the tuple (destination, intermediate, capacity).
- 2.
An Identified Event is defined as the tuple (packet, origin, destination).
- 3.
Maximum capacity is used to choose between several interconnections.
References
ACIMS: DEVS-Suite Simulator version 5.0.0 (2019). https://sourceforge.net/projects/devs-suitesim/. Available at https://sourceforge.net/projects/devs-suitesim/. Accessed 1 July 2020
Alliance, E.: Ethernet roadmap. www.ethernetalliance.org/roadmap (2019). Accessed: 10 June 2020
Alshareef, A.: Activity specification for time-based discrete event simulation models. Ph.D. dissertation, Arizona State University, Tempe (2019)
Alshareef, A., Kim, D., Seo, C., Zeigler, B.P.: Activity diagrams between DEVS-based modeling & simulation and fUML-based model execution. In: Proceedings of the 2020 Summer Simulation Conference. Society for Computer Simulation International (2020)
Alshareef, A., Sarjoughian, H.: Metamodeling activities for hierarchical component-based models. In: 2019 Spring Simulation Conference (SpringSim), pp. 1–12. IEEE (2019)
Andel, T.R., Yasinsac, A.: On the credibility of manet simulations. Computer 39(7), 48–54 (2006). https://doi.org/10.1109/MC.2006.242
Anjum, S.S., Noor, R.M., Anisi, M.H.: Review on manet based communication for search and rescue operations. Wirel. Pers. Commun. 94(1), 31–52 (2017)
Bergero, F., Kofman, E.: Powerdevs: a tool for hybrid system modeling and real-time simulation. Simulation 87(1–2), 113–132 (2011)
Blas, M.J., Gonnet, S., Leone, H.: Routing structure over discrete event system specification: a DEVS adaptation to develop smart routing in simulation models. In: 2017 Winter Simulation Conference (WSC), pp. 774–785. IEEE (2017)
Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The Functional Mockup Interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference, pp. 105–114. Linköping University Press (2011). http://elib.dlr.de/74668/
Bollinger, L.A., van Blijswijk, M.J., Dijkema, G.P., Nikolic, I.: An energy systems modelling tool for the social simulation community. J. Artif. Soc. Social Simul. 19(1) (2016). https://doi.org/10.18564/jasss.2971. http://jasss.soc.surrey.ac.uk/19/1/1.html
Bonaventura, M.: Hybrid modeling and simulation of complex data networks. Ph.D. thesis, University of Buenos Aires, Argentina (2019). https://ri.conicet.gov.ar/handle/11336/83438
Bonaventura, M., Castro, R.: Fluid-flow and packet-level models of data networks unified under a modular/hierarchical framework: Speedups and simplicity, combined. In: Proceedings of 2018 Winter Simulation Conference (WSC) (2018)
Bonaventura, M., Foguelman, D., Castro, R.: Discrete event modeling and simulation-driven engineering for the ATLAS data acquisition network. Comp. cSci. Eng. 18(3), 70–83 (2016)
Bonaventura, M., Jonckheere, M., Castro, R.: Simulation study of dynamic load balancing for processor sharing servers with finite capacity under generalized halfin-whitt-jagerman regimes. In: Proceedings of 2018 Winter Simulation Conference (WSC) (2018)
Camus, B., Paris, T., Vaubourg, J., Presse, Y., Bourjot, C., Ciarletta, L., Chevrier, V.: Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware. SIMULATION (2018)
Castro, R.: Integrative tools for modeling, simulation and control of data networks. Ph.D. thesis, National University of Rosario, Argentina (2010). Spanish, extended summary in English
Castro, R., Kofman, E.: An integrative approach for hybrid modeling, simulation and control of data networks based on the devs formalism. In: Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications, chap. 18. Morgan Kaufmann (2015)
Castro, R., Kofman, E., Cellier, F.E.: Quantization-based integration methods for delay-differential equations. Simul. Model. Practice Theory 19(1), 314–336 (2011)
Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: Proceedings of the Second ACM International Workshop on Principles of Mobile Computing, POMC ’02, pp. 38–43. ACM, New York, NY, USA (2002). https://doi.org/10.1145/584490.584499. http://doi.acm.org/10.1145/584490.584499
Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Business Media (2006)
Chang, W.T., Ha, S., Lee, E.A.: Heterogeneous simulation-mixing discrete-event models with dataflow. Journal of VLSI signal processing systems for signal, image and video technology 15(1–2), 127–144 (1997)
Dorathy, I., Chandrasekaran, M.: Simulation tools for mobile ad hoc networks: a survey. J. Appl. Res. Technol. 16, 437–445 (2019)
Fennibay, D., Yurdakul, A., Sen, A.: A heterogeneous simulation and modeling framework for automation systems. IEEE Trans. Computer-Aided Design Integr. Circ. Syst. 31(11), 1642–1655 (2012). https://doi.org/10.1109/TCAD.2012.2199116
Flynn, J., Tewari, H., O’Mahony, D.: Jemu: A real time emulation system for mobile ad hoc networks. In: Proceedings of the first joint IEI/IEE Symposium on Telecommunications Systems Research, pp. 262–267 (2001)
Frey, H., Görgen, D., Lehnert, J.K., Sturm, P.: A java-based uniform workbench for simulating and executing distributed mobile applications. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) Scientific Engineering of Distributed Java Applications, pp. 116–127. Springer, Berlin (2004)
Fritzson, P., Engelson, V.: Modelica—A unified object-oriented language for system modeling and simulation. In: ECOOP’98-Object-Oriented Programming, pp. 67–90. Springer (1998). http://link.springer.com/chapter/10.1007/BFb0054087
Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., Santos, J.I., Del Olmo, R., López-Paredes, A., Edmonds, B.: Errors and artefacts in agent-based modelling. J. Artifi. Soc. Social Simul.12(1) (2009). http://jasss.soc.surrey.ac.uk/12/1/1.Html
Giambiasi, N.: From sequential machines to DEVS formalism. In: Proceedings of the 2009 Summer Computer Simulation Conference, SCSC ’09, pp. 216–222. Society for Modeling; Simulation International, Vista, CA (2009)
Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: A survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018). https://doi.org/10.1145/3179993. http://doi.acm.org/10.1145/3179993
Group, O.M.: Ontology definition metamodel request for proposal (2003)
Group, O.M.: UML 2.0 Infrastructure Specification (2003)
Group, O.M.: Object constraint language (2014)
Gu, Y., Liu, Y., Towsley, D.: On integrating fluid models with packet simulation. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2856–2866. IEEE (2004)
Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. No. 15 in Telematica Institute Fundamental Research Series. Telematica Instituut, Enschede, The Netherlands (2005). http://www.researchgate.net/publication/215697579_Ontological_Foundations_for_Structural_Conceptual_Models
Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 Project Goals. In: Proceedings of WNS2’06, p. 13. ACM (2006)
Hogie, L., Bouvry, P., Guinand, F.: An overview of MANETs simulation. Electron. Notes Theor. Comput. Sci. 150(1), 81–101 (2006). https://doi.org/10.1016/j.entcs.2005.12.025
Information technology—Open Systems Interconnection—Basic Reference Model: The Basic Model (1994)
Ivanic, N., Rivera, B., Adamson, B.: Mobile ad hoc network emulation environment. In: MILCOM 2009 - 2009 IEEE Military Communications Conference, pp. 1–6 (2009). https://doi.org/10.1109/MILCOM.2009.5379781
Johnson, D.B., Maltz, D.A., Broch, J.: Ad hoc networking. chap. DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, pp. 139–172. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001). http://dl.acm.org/citation.cfm?id=374547.374552
Kapucu, N., Garayev, V.: Collaborative decision-making in emergency and disaster management. Int. J. Public Admin. 34(6), 366–375 (2011). https://doi.org/10.1080/01900692.2011.561477
Khairnar, V.D., Pradhan, S.N.: Mobility models for vehicular ad-hoc network simulation. In: 2011 IEEE Symposium on Computers Informatics, pp. 460–465 (2011). https://doi.org/10.1109/ISCI.2011.5958959
Kiess, W., Mauve, M.: A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks 5(3), 324–339 (2007)
Kim, T., Hwang, M.H., Kim, D., Zeigler, B.P.: DEVS/NS-2 environment; integrated tool for efficient networks modeling and simulation. In: Proceedings of the 2007 Spring Simulation Multiconference, vol. 2, p. 8. SCS/ACM, Norfolk, Virginia, USA (2007)
Kim, Y.J., Kim, J.H., Kim, T.G.: Heterogeneous simulation framework using DEVS bus. SIMULATION 79(1), 3–18 (2003). https://doi.org/10.1177/0037549703253543
Klein, M.: Dianemu: A java based generic simulation environment for distributed protocols (2003)
Kofman, E.: A third order discrete event method for continuous system simulation. Latin Am. Appl. Res. 36(2), 101–108 (2006)
Kofman, E., Junco, S.: Quantized-state systems: a Devs approach for continuous system simulation. Trans. Soc. Model. Simul. Int. 18(3), 123–132 (2001)
Komazec, N., Bozanic, D., Pamucar, D.: Aspects of decision-making in emergency situations. In: ICT Forum Nis, pp. 55–59 (2014)
Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: The incredibles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)
Laurito, A., Bonaventura, M., Eukeni Pozo Astigarraga, M., Castro, R.: Topogen: A network topology generation architecture with application to automating simulations of software defined networks. In: 2017 Winter Simulation Conference (WSC), pp. 1049–1060 (2017). https://doi.org/10.1109/WSC.2017.8247854
Lien, Y., Jang, H., Tsai, T.: A MANET based emergency communication and information system for catastrophic natural disasters. In: 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, pp. 412–417 (2009). https://doi.org/10.1109/ICDCSW.2009.72
Liu, B., Figueiredo, D.R., Guo, Y., Kurose, J., Towsley, D.: A study of networks simulation efficiency: Fluid simulation vs. packet-level simulation. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1244–1253. IEEE (2001)
Liu, J., Liu, Y., Du, Z., Li, T.: Gpu-assisted hybrid network traffic model. In: Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 63–74. ACM (2014)
Liu, Y., Lo Presti, F., Misra, V., Towsley, D., Gu, Y.: Fluid models and solutions for large-scale ip networks. In: ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 91–101. ACM (2003)
Mallapur, S.V., Patil, S.R.: Survey on simulation tools for mobile ad-hoc networks. Int. J. Comput. Networks Wirel. Commun. (IJCNWC) 2(2) (2012)
Manpreet, Malhotra, J.: A survey on MANET simulation tools. In: 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), pp. 495–498 (2014). https://doi.org/10.1109/CIPECH.2014.7019120
Migoni, G., Bortolotto, M., Kofman, E., Cellier, F.E.: Linearly implicit quantization-based integration methods for stiff ordinary differential equations. Simul. Model. Practice Theory 35, 118–136 (2013)
Migoni, G., Kofman, E., Cellier, F.: Quantization-based new integration methods for stiff ordinary differential equations. Simulation 88(4), 387–407 (2012)
Misra, V., Gong, W.B., Towsley, D.: Fluid-based analysis of a network of aqm routers supporting tcp flows with an application to red. In: ACM SIGCOMM Computer Communication Review, vol. 30, pp. 151–160. ACM (2000)
Mohammed, A., Al-Ghrairi, A.: Differences between ad hoc networks and mobile ad hoc networks: A survey. Xinan Jiaotong Daxue Xuebao/J. Southwest Jiaotong Univ. 54, 12 (2019). https://doi.org/10.35741/issn.0258-2724.54.4.20
MS4 Systems: MS4 Me Simulator version 3.0 (2018). http://ms4systems.com/pages/ms4me.php. Available at http://ms4systems.com/pages/ms4me.php (Accessed July 1, 2020)
Muchtar, F., Abdullah, A.H., Latiff, M.S.A., Hassan, S., Wahab, M.H.A., Abdul-Salaam, G.: A technical review of MANET testbed using mobile robot technology. J. Phys. Conf. Ser. 1049, 012001. IOP Publishing (2018)
Nilsson, E.G., Stølen, K.: Ad hoc networks and mobile devices in emergency response—a perfect match? In: Zheng, J., Simplot-Ryl, D., Leung, V.C.M. (eds.) Ad Hoc Networks, pp. 17–33. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)
Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. ACM SIGCOMM Computer Commun. Rev. 28(4), 303–314 (1998)
Paris, T., Wiart, J.B., Netter, D., Chevrier, V.: Teaching co-simulation basics through practice. In: Proceedings of the 51th Computer Simulation Conference. Society for Computer Simulation International, Berlin, Germany (2019). https://hal.archives-ouvertes.fr/hal-02268350/file/TeachingCosimulationBasicsThroughPractice_HAL.pdf
Pennock, M.J., Rouse, W.B.: Why connecting theories together may not work: How to address complex paradigm-spanning questions. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 373–378. IEEE (2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6973936
Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999). https://doi.org/10.1109/MCSA.1999.749281
R., B.: Requirements for Internet Hosts—Communication Layers (1989). https://tools.ietf.org/html/rfc1122
Reina, D.G., Askalani, M., Toral, S.L., Barrero, F., Asimakopoulou, E., Bessis, N.: A survey on multihop ad hoc networks for disaster response scenarios. Int. J. Distrib. Sensor Networks 11(10), 647037 (2015). https://doi.org/10.1155/2015/647037
Riley, G.F., Henderson, T.R.: The ns-3 Network Simulator, pp. 15–34. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12331-3_2. https://doi.org/10.1007/978-3-642-12331-3_2
Santi, L., Bonaventura, M.: py2pdevs: a python to powerdevs interface. https://gitlab.cern.ch/tdaq-simulation/powerdevs/ (2018)
Sargent, R.G.: Some approaches and paradigms for verifying and validating simulation models. In: Simulation Conference, 2001. Proceedings of the Winter, vol. 1, pp. 106–114 (2001)
Sarjoughian, H.S.: Model composability. In: Proceedings of the 38th Conference on Winter Simulation, pp. 149–158. Winter Simulation Conference (2006). http://dl.acm.org/citation.cfm?id=1218144
Schindelhauer, C., Lukovszki, T., Rührup, S., Volbert, K.: Worst case mobility in ad hoc networks. In: Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’03, pp. 230–239. ACM, New York, NY, USA (2003). https://doi.org/10.1145/777412.777448
Sichitiu, M.L.: Mobility Models for Ad Hoc Networks, pp. 237–254. Springer, London (2009). https://doi.org/10.1007/978-1-84800-328-6_10.
Sikora, A., Niewiadomska-Szynkiewicz, E., Krzysztoń, M.: Simulation of mobile wireless ad hoc networks for emergency situation awareness. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1087–1095 (2015). https://doi.org/10.15439/2015F52
Takai, M., Martin, J., Bagrodia, R.: Effects of wireless physical layer modeling in mobile ad hoc networks. In: Proceedings of the 2Nd ACM International Symposium on Mobile Ad Hoc Networking&Amp; Computing, MobiHoc ’01, pp. 87–94. ACM, New York, NY, USA (2001). https://doi.org/10.1145/501426.501429.
Tannenbaum, A., Wetherall, D.: Computer Networks, 5th edn. (2010)
Tolk, A., Diallo, S., Padilla, J., Turnitsa, C.: How is M&S Interoperability different from other Interoperability Domains? GUEST EDITORIAL p. 5 (2012). http://www.msco.mil/documents/MSJournal2012-2013Winter.pdf#page=7
Tüncel, S., Ekiz, H., Zengin, A.: Design and implementation of a new MANET simulator model for AODV simulation (2016). https://doi.org/10.3906/elk-1311-120
Vangheluwe, H.: Multi-formalism modelling and simulation. Ph.D. thesis, Ghent University (2000)
Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: Proceedings of the AIS’2002 conference (AI, Simulation and Planning in High Autonomy Systems), Lisboa, Portugal, pp. 9–20 (2002)
Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools ’08, pp. 60:1–60:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008). http://dl.acm.org/citation.cfm?id=1416222.1416290
Vaubourg, J., Chevrier, V., Ciarletta, L., Camus, B.: Co-simulation of IP network models in the Cyber-Physical systems context, using a DEVS-based platform. In: Proceedings of the 19th Communications & Networking Symposium, p. 2. Society for Computer Simulation International (2016). http://dl.acm.org/citation.cfm?id=2962688
Vaubourg, J., Presse, Y., Camus, B., Bourjot, C., Ciarletta, L., Chevrier, V., Tavella, J.P., Morais, H.: Multi-agent Multi-Model Simulation of Smart Grids in the MS4SG Project. In: Y. Demazeau, K.S. Decker, J. Bajo Pérez, F. de la Prieta (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection, vol. 9086, pp. 240–251. Springer International Publishing, Cham (2015). http://link.springer.com/10.1007/978-3-319-18944-4_20
Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D.R.C., Mittal, S., Martin, J.L.R., Sarjoughian, H., Touraille, L., Traoré, M.K., Zeigler, B.P.: Standardizing DEVS Simulation Middleware. In: Discrete-Event Modeling and Simulation: Theory and Applications, p. 459 (2010)
Wainer, G.A., Mosterman, P.J.: Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press, Boca Raton (2016)
Yacoub, A.: Integrated Simulator of Mobile Ad-hoc Network-based Infrastructure : A Case Study. In: Spring Simulation Conference (SpringSim 2020). Society for Modeling and Simulation International (SCS), Fairfax, VA, USA (2020). https://doi.org/10.22360/SpringSim.2020.CNS.006. https://dl.acm.org/doi/abs/10.5555/3408207.3408230
Yacoub, A.: Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios. arXiv:2004.14093 [cs] (2020). http://arxiv.org/abs/2004.14093. ArXiv: 2004.14093
Yong, J. K., Tag, G. K.: A heterogeneous simulation framework based on the DEVS bus and the high level architecture. In: 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274), vol. 1, pp. 421–428, vol.1 (1998). https://doi.org/10.1109/WSC.1998.745017
Zeigler, B.P.: Theory of modeling and simulation. Wiley, New York, NY (1976)
Zeigler, B.P., Muzy, A., Kofman, E.: Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, 3rd edn. Academic (2018)
Zeigler, B.P., Sarjoughian, H.S.: Guide to Modeling and Simulation of Systems of Systems, 2nd edn. Springer, Berlin (2017)
Zhou, L., Wu, X., Xu, Z., Fujita, H.: Emergency decision making for natural disasters: an overview. Int. J. Disaster Risk Reduc. 27, 567–576 (2018)
Zsambok, C.E., Klein, G.: Naturalistic Decision Making. Psychology Press (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Alshareef, A., Blas, M.J., Bonaventura, M., Paris, T., Yacoub, A., Zeigler, B.P. (2022). Using DEVS for Full Life Cycle Model-Based System Engineering in Complex Network Design. In: Nicopolitidis, P., Misra, S., Yang, L.T., Zeigler, B., Ning, Z. (eds) Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-87049-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-87049-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-87048-5
Online ISBN: 978-3-030-87049-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)
