Skip to main content

Using DEVS for Full Life Cycle Model-Based System Engineering in Complex Network Design

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 289)

Abstract

The Discrete Event System Specification (DEVS) is a modeling formalism that supports a general methodology for describing discrete event systems with the capability to represent continuous, discrete, and hybrid systems due to its system theoretic basis. In this chapter, we discuss the use of DEVS as the basic modeling and simulation framework for Model-Based System Engineering methodology that supports the critical stages in a top down design of complex networks. Focusing on the design of communication networks for emergency response, we show how such networks pose challenges to current technologies that current simulators cannot address. This sets the stage for considering how the DEVS formalism supports the required phases of top down design and the transitions from one phase to the next. After describing the proposed DEVS-based system engineering methodology in depth, we conclude with a discussion of the current state of its application, also mentioning open research needed to bring it into general practice.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   96.29
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   131.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Each entry is defined as the tuple (destination, intermediate, capacity).

  2. 2.

    An Identified Event is defined as the tuple (packet, origin, destination).

  3. 3.

    Maximum capacity is used to choose between several interconnections.

References

  1. ACIMS: DEVS-Suite Simulator version 5.0.0 (2019). https://sourceforge.net/projects/devs-suitesim/. Available at https://sourceforge.net/projects/devs-suitesim/. Accessed 1 July 2020

  2. Alliance, E.: Ethernet roadmap. www.ethernetalliance.org/roadmap (2019). Accessed: 10 June 2020

  3. Alshareef, A.: Activity specification for time-based discrete event simulation models. Ph.D. dissertation, Arizona State University, Tempe (2019)

    Google Scholar 

  4. Alshareef, A., Kim, D., Seo, C., Zeigler, B.P.: Activity diagrams between DEVS-based modeling & simulation and fUML-based model execution. In: Proceedings of the 2020 Summer Simulation Conference. Society for Computer Simulation International (2020)

    Google Scholar 

  5. Alshareef, A., Sarjoughian, H.: Metamodeling activities for hierarchical component-based models. In: 2019 Spring Simulation Conference (SpringSim), pp. 1–12. IEEE (2019)

    Google Scholar 

  6. Andel, T.R., Yasinsac, A.: On the credibility of manet simulations. Computer 39(7), 48–54 (2006). https://doi.org/10.1109/MC.2006.242

    Article  Google Scholar 

  7. Anjum, S.S., Noor, R.M., Anisi, M.H.: Review on manet based communication for search and rescue operations. Wirel. Pers. Commun. 94(1), 31–52 (2017)

    Google Scholar 

  8. Bergero, F., Kofman, E.: Powerdevs: a tool for hybrid system modeling and real-time simulation. Simulation 87(1–2), 113–132 (2011)

    Article  Google Scholar 

  9. Blas, M.J., Gonnet, S., Leone, H.: Routing structure over discrete event system specification: a DEVS adaptation to develop smart routing in simulation models. In: 2017 Winter Simulation Conference (WSC), pp. 774–785. IEEE (2017)

    Google Scholar 

  10. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauß, C., Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The Functional Mockup Interface for tool independent exchange of simulation models. In: Proceedings of the 8th International Modelica Conference, pp. 105–114. Linköping University Press (2011). http://elib.dlr.de/74668/

  11. Bollinger, L.A., van Blijswijk, M.J., Dijkema, G.P., Nikolic, I.: An energy systems modelling tool for the social simulation community. J. Artif. Soc. Social Simul. 19(1) (2016). https://doi.org/10.18564/jasss.2971. http://jasss.soc.surrey.ac.uk/19/1/1.html

  12. Bonaventura, M.: Hybrid modeling and simulation of complex data networks. Ph.D. thesis, University of Buenos Aires, Argentina (2019). https://ri.conicet.gov.ar/handle/11336/83438

  13. Bonaventura, M., Castro, R.: Fluid-flow and packet-level models of data networks unified under a modular/hierarchical framework: Speedups and simplicity, combined. In: Proceedings of 2018 Winter Simulation Conference (WSC) (2018)

    Google Scholar 

  14. Bonaventura, M., Foguelman, D., Castro, R.: Discrete event modeling and simulation-driven engineering for the ATLAS data acquisition network. Comp. cSci. Eng. 18(3), 70–83 (2016)

    Google Scholar 

  15. Bonaventura, M., Jonckheere, M., Castro, R.: Simulation study of dynamic load balancing for processor sharing servers with finite capacity under generalized halfin-whitt-jagerman regimes. In: Proceedings of 2018 Winter Simulation Conference (WSC) (2018)

    Google Scholar 

  16. Camus, B., Paris, T., Vaubourg, J., Presse, Y., Bourjot, C., Ciarletta, L., Chevrier, V.: Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware. SIMULATION (2018)

    Google Scholar 

  17. Castro, R.: Integrative tools for modeling, simulation and control of data networks. Ph.D. thesis, National University of Rosario, Argentina (2010). Spanish, extended summary in English

    Google Scholar 

  18. Castro, R., Kofman, E.: An integrative approach for hybrid modeling, simulation and control of data networks based on the devs formalism. In: Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications, chap. 18. Morgan Kaufmann (2015)

    Google Scholar 

  19. Castro, R., Kofman, E., Cellier, F.E.: Quantization-based integration methods for delay-differential equations. Simul. Model. Practice Theory 19(1), 314–336 (2011)

    Article  Google Scholar 

  20. Cavin, D., Sasson, Y., Schiper, A.: On the accuracy of MANET simulators. In: Proceedings of the Second ACM International Workshop on Principles of Mobile Computing, POMC ’02, pp. 38–43. ACM, New York, NY, USA (2002). https://doi.org/10.1145/584490.584499. http://doi.acm.org/10.1145/584490.584499

  21. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Business Media (2006)

    Google Scholar 

  22. Chang, W.T., Ha, S., Lee, E.A.: Heterogeneous simulation-mixing discrete-event models with dataflow. Journal of VLSI signal processing systems for signal, image and video technology 15(1–2), 127–144 (1997)

    Article  Google Scholar 

  23. Dorathy, I., Chandrasekaran, M.: Simulation tools for mobile ad hoc networks: a survey. J. Appl. Res. Technol. 16, 437–445 (2019)

    Google Scholar 

  24. Fennibay, D., Yurdakul, A., Sen, A.: A heterogeneous simulation and modeling framework for automation systems. IEEE Trans. Computer-Aided Design Integr. Circ. Syst. 31(11), 1642–1655 (2012). https://doi.org/10.1109/TCAD.2012.2199116

    Article  Google Scholar 

  25. Flynn, J., Tewari, H., O’Mahony, D.: Jemu: A real time emulation system for mobile ad hoc networks. In: Proceedings of the first joint IEI/IEE Symposium on Telecommunications Systems Research, pp. 262–267 (2001)

    Google Scholar 

  26. Frey, H., Görgen, D., Lehnert, J.K., Sturm, P.: A java-based uniform workbench for simulating and executing distributed mobile applications. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) Scientific Engineering of Distributed Java Applications, pp. 116–127. Springer, Berlin (2004)

    Chapter  Google Scholar 

  27. Fritzson, P., Engelson, V.: Modelica—A unified object-oriented language for system modeling and simulation. In: ECOOP’98-Object-Oriented Programming, pp. 67–90. Springer (1998). http://link.springer.com/chapter/10.1007/BFb0054087

  28. Galán, J.M., Izquierdo, L.R., Izquierdo, S.S., Santos, J.I., Del Olmo, R., López-Paredes, A., Edmonds, B.: Errors and artefacts in agent-based modelling. J. Artifi. Soc. Social Simul.12(1) (2009). http://jasss.soc.surrey.ac.uk/12/1/1.Html

  29. Giambiasi, N.: From sequential machines to DEVS formalism. In: Proceedings of the 2009 Summer Computer Simulation Conference, SCSC ’09, pp. 216–222. Society for Modeling; Simulation International, Vista, CA (2009)

    Google Scholar 

  30. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: A survey. ACM Comput. Surv. 51(3), 49:1–49:33 (2018). https://doi.org/10.1145/3179993. http://doi.acm.org/10.1145/3179993

  31. Group, O.M.: Ontology definition metamodel request for proposal (2003)

    Google Scholar 

  32. Group, O.M.: UML 2.0 Infrastructure Specification (2003)

    Google Scholar 

  33. Group, O.M.: Object constraint language (2014)

    Google Scholar 

  34. Gu, Y., Liu, Y., Towsley, D.: On integrating fluid models with packet simulation. In: INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE Computer and Communications Societies, vol. 4, pp. 2856–2866. IEEE (2004)

    Google Scholar 

  35. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models. No. 15 in Telematica Institute Fundamental Research Series. Telematica Instituut, Enschede, The Netherlands (2005). http://www.researchgate.net/publication/215697579_Ontological_Foundations_for_Structural_Conceptual_Models

  36. Henderson, T.R., Roy, S., Floyd, S., Riley, G.F.: ns-3 Project Goals. In: Proceedings of WNS2’06, p. 13. ACM (2006)

    Google Scholar 

  37. Hogie, L., Bouvry, P., Guinand, F.: An overview of MANETs simulation. Electron. Notes Theor. Comput. Sci. 150(1), 81–101 (2006). https://doi.org/10.1016/j.entcs.2005.12.025

    Article  Google Scholar 

  38. Information technology—Open Systems Interconnection—Basic Reference Model: The Basic Model (1994)

    Google Scholar 

  39. Ivanic, N., Rivera, B., Adamson, B.: Mobile ad hoc network emulation environment. In: MILCOM 2009 - 2009 IEEE Military Communications Conference, pp. 1–6 (2009). https://doi.org/10.1109/MILCOM.2009.5379781

  40. Johnson, D.B., Maltz, D.A., Broch, J.: Ad hoc networking. chap. DSR: The Dynamic Source Routing Protocol for Multihop Wireless Ad Hoc Networks, pp. 139–172. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2001). http://dl.acm.org/citation.cfm?id=374547.374552

  41. Kapucu, N., Garayev, V.: Collaborative decision-making in emergency and disaster management. Int. J. Public Admin. 34(6), 366–375 (2011). https://doi.org/10.1080/01900692.2011.561477

    Article  Google Scholar 

  42. Khairnar, V.D., Pradhan, S.N.: Mobility models for vehicular ad-hoc network simulation. In: 2011 IEEE Symposium on Computers Informatics, pp. 460–465 (2011). https://doi.org/10.1109/ISCI.2011.5958959

  43. Kiess, W., Mauve, M.: A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks 5(3), 324–339 (2007)

    Google Scholar 

  44. Kim, T., Hwang, M.H., Kim, D., Zeigler, B.P.: DEVS/NS-2 environment; integrated tool for efficient networks modeling and simulation. In: Proceedings of the 2007 Spring Simulation Multiconference, vol. 2, p. 8. SCS/ACM, Norfolk, Virginia, USA (2007)

    Google Scholar 

  45. Kim, Y.J., Kim, J.H., Kim, T.G.: Heterogeneous simulation framework using DEVS bus. SIMULATION 79(1), 3–18 (2003). https://doi.org/10.1177/0037549703253543

    Article  Google Scholar 

  46. Klein, M.: Dianemu: A java based generic simulation environment for distributed protocols (2003)

    Google Scholar 

  47. Kofman, E.: A third order discrete event method for continuous system simulation. Latin Am. Appl. Res. 36(2), 101–108 (2006)

    Google Scholar 

  48. Kofman, E., Junco, S.: Quantized-state systems: a Devs approach for continuous system simulation. Trans. Soc. Model. Simul. Int. 18(3), 123–132 (2001)

    Google Scholar 

  49. Komazec, N., Bozanic, D., Pamucar, D.: Aspects of decision-making in emergency situations. In: ICT Forum Nis, pp. 55–59 (2014)

    Google Scholar 

  50. Kurkowski, S., Camp, T., Colagrosso, M.: MANET simulation studies: The incredibles. SIGMOBILE Mob. Comput. Commun. Rev. 9(4), 50–61 (2005)

    Google Scholar 

  51. Laurito, A., Bonaventura, M., Eukeni Pozo Astigarraga, M., Castro, R.: Topogen: A network topology generation architecture with application to automating simulations of software defined networks. In: 2017 Winter Simulation Conference (WSC), pp. 1049–1060 (2017). https://doi.org/10.1109/WSC.2017.8247854

  52. Lien, Y., Jang, H., Tsai, T.: A MANET based emergency communication and information system for catastrophic natural disasters. In: 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, pp. 412–417 (2009). https://doi.org/10.1109/ICDCSW.2009.72

  53. Liu, B., Figueiredo, D.R., Guo, Y., Kurose, J., Towsley, D.: A study of networks simulation efficiency: Fluid simulation vs. packet-level simulation. In: Proceedings of the 20th Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 3, pp. 1244–1253. IEEE (2001)

    Google Scholar 

  54. Liu, J., Liu, Y., Du, Z., Li, T.: Gpu-assisted hybrid network traffic model. In: Proceedings of the 2nd ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pp. 63–74. ACM (2014)

    Google Scholar 

  55. Liu, Y., Lo Presti, F., Misra, V., Towsley, D., Gu, Y.: Fluid models and solutions for large-scale ip networks. In: ACM SIGMETRICS Performance Evaluation Review, vol. 31, pp. 91–101. ACM (2003)

    Google Scholar 

  56. Mallapur, S.V., Patil, S.R.: Survey on simulation tools for mobile ad-hoc networks. Int. J. Comput. Networks Wirel. Commun. (IJCNWC) 2(2) (2012)

    Google Scholar 

  57. Manpreet, Malhotra, J.: A survey on MANET simulation tools. In: 2014 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), pp. 495–498 (2014). https://doi.org/10.1109/CIPECH.2014.7019120

  58. Migoni, G., Bortolotto, M., Kofman, E., Cellier, F.E.: Linearly implicit quantization-based integration methods for stiff ordinary differential equations. Simul. Model. Practice Theory 35, 118–136 (2013)

    Article  Google Scholar 

  59. Migoni, G., Kofman, E., Cellier, F.: Quantization-based new integration methods for stiff ordinary differential equations. Simulation 88(4), 387–407 (2012)

    Article  Google Scholar 

  60. Misra, V., Gong, W.B., Towsley, D.: Fluid-based analysis of a network of aqm routers supporting tcp flows with an application to red. In: ACM SIGCOMM Computer Communication Review, vol. 30, pp. 151–160. ACM (2000)

    Google Scholar 

  61. Mohammed, A., Al-Ghrairi, A.: Differences between ad hoc networks and mobile ad hoc networks: A survey. Xinan Jiaotong Daxue Xuebao/J. Southwest Jiaotong Univ. 54, 12 (2019). https://doi.org/10.35741/issn.0258-2724.54.4.20

  62. MS4 Systems: MS4 Me Simulator version 3.0 (2018). http://ms4systems.com/pages/ms4me.php. Available at http://ms4systems.com/pages/ms4me.php (Accessed July 1, 2020)

  63. Muchtar, F., Abdullah, A.H., Latiff, M.S.A., Hassan, S., Wahab, M.H.A., Abdul-Salaam, G.: A technical review of MANET testbed using mobile robot technology. J. Phys. Conf. Ser. 1049, 012001. IOP Publishing (2018)

    Google Scholar 

  64. Nilsson, E.G., Stølen, K.: Ad hoc networks and mobile devices in emergency response—a perfect match? In: Zheng, J., Simplot-Ryl, D., Leung, V.C.M. (eds.) Ad Hoc Networks, pp. 17–33. Springer, Berlin Heidelberg, Berlin, Heidelberg (2010)

    Chapter  Google Scholar 

  65. Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP throughput: a simple model and its empirical validation. ACM SIGCOMM Computer Commun. Rev. 28(4), 303–314 (1998)

    Article  Google Scholar 

  66. Paris, T., Wiart, J.B., Netter, D., Chevrier, V.: Teaching co-simulation basics through practice. In: Proceedings of the 51th Computer Simulation Conference. Society for Computer Simulation International, Berlin, Germany (2019). https://hal.archives-ouvertes.fr/hal-02268350/file/TeachingCosimulationBasicsThroughPractice_HAL.pdf

  67. Pennock, M.J., Rouse, W.B.: Why connecting theories together may not work: How to address complex paradigm-spanning questions. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 373–378. IEEE (2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6973936

  68. Perkins, C.E., Royer, E.M.: Ad-hoc on-demand distance vector routing. In: Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications, pp. 90–100 (1999). https://doi.org/10.1109/MCSA.1999.749281

  69. R., B.: Requirements for Internet Hosts—Communication Layers (1989). https://tools.ietf.org/html/rfc1122

  70. Reina, D.G., Askalani, M., Toral, S.L., Barrero, F., Asimakopoulou, E., Bessis, N.: A survey on multihop ad hoc networks for disaster response scenarios. Int. J. Distrib. Sensor Networks 11(10), 647037 (2015). https://doi.org/10.1155/2015/647037

  71. Riley, G.F., Henderson, T.R.: The ns-3 Network Simulator, pp. 15–34. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12331-3_2. https://doi.org/10.1007/978-3-642-12331-3_2

  72. Santi, L., Bonaventura, M.: py2pdevs: a python to powerdevs interface. https://gitlab.cern.ch/tdaq-simulation/powerdevs/ (2018)

  73. Sargent, R.G.: Some approaches and paradigms for verifying and validating simulation models. In: Simulation Conference, 2001. Proceedings of the Winter, vol. 1, pp. 106–114 (2001)

    Google Scholar 

  74. Sarjoughian, H.S.: Model composability. In: Proceedings of the 38th Conference on Winter Simulation, pp. 149–158. Winter Simulation Conference (2006). http://dl.acm.org/citation.cfm?id=1218144

  75. Schindelhauer, C., Lukovszki, T., Rührup, S., Volbert, K.: Worst case mobility in ad hoc networks. In: Proceedings of the Fifteenth Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’03, pp. 230–239. ACM, New York, NY, USA (2003). https://doi.org/10.1145/777412.777448

  76. Sichitiu, M.L.: Mobility Models for Ad Hoc Networks, pp. 237–254. Springer, London (2009). https://doi.org/10.1007/978-1-84800-328-6_10.

  77. Sikora, A., Niewiadomska-Szynkiewicz, E., Krzysztoń, M.: Simulation of mobile wireless ad hoc networks for emergency situation awareness. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1087–1095 (2015). https://doi.org/10.15439/2015F52

  78. Takai, M., Martin, J., Bagrodia, R.: Effects of wireless physical layer modeling in mobile ad hoc networks. In: Proceedings of the 2Nd ACM International Symposium on Mobile Ad Hoc Networking&Amp; Computing, MobiHoc ’01, pp. 87–94. ACM, New York, NY, USA (2001). https://doi.org/10.1145/501426.501429.

  79. Tannenbaum, A., Wetherall, D.: Computer Networks, 5th edn. (2010)

    Google Scholar 

  80. Tolk, A., Diallo, S., Padilla, J., Turnitsa, C.: How is M&S Interoperability different from other Interoperability Domains? GUEST EDITORIAL p. 5 (2012). http://www.msco.mil/documents/MSJournal2012-2013Winter.pdf#page=7

  81. Tüncel, S., Ekiz, H., Zengin, A.: Design and implementation of a new MANET simulator model for AODV simulation (2016). https://doi.org/10.3906/elk-1311-120

    Article  Google Scholar 

  82. Vangheluwe, H.: Multi-formalism modelling and simulation. Ph.D. thesis, Ghent University (2000)

    Google Scholar 

  83. Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: Proceedings of the AIS’2002 conference (AI, Simulation and Planning in High Autonomy Systems), Lisboa, Portugal, pp. 9–20 (2002)

    Google Scholar 

  84. Varga, A., Hornig, R.: An overview of the OMNeT++ simulation environment. In: Proceedings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops, Simutools ’08, pp. 60:1–60:10. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium (2008). http://dl.acm.org/citation.cfm?id=1416222.1416290

  85. Vaubourg, J., Chevrier, V., Ciarletta, L., Camus, B.: Co-simulation of IP network models in the Cyber-Physical systems context, using a DEVS-based platform. In: Proceedings of the 19th Communications & Networking Symposium, p. 2. Society for Computer Simulation International (2016). http://dl.acm.org/citation.cfm?id=2962688

  86. Vaubourg, J., Presse, Y., Camus, B., Bourjot, C., Ciarletta, L., Chevrier, V., Tavella, J.P., Morais, H.: Multi-agent Multi-Model Simulation of Smart Grids in the MS4SG Project. In: Y. Demazeau, K.S. Decker, J. Bajo Pérez, F. de la Prieta (eds.) Advances in Practical Applications of Agents, Multi-Agent Systems, and Sustainability: The PAAMS Collection, vol. 9086, pp. 240–251. Springer International Publishing, Cham (2015). http://link.springer.com/10.1007/978-3-319-18944-4_20

  87. Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D.R.C., Mittal, S., Martin, J.L.R., Sarjoughian, H., Touraille, L., Traoré, M.K., Zeigler, B.P.: Standardizing DEVS Simulation Middleware. In: Discrete-Event Modeling and Simulation: Theory and Applications, p. 459 (2010)

    Google Scholar 

  88. Wainer, G.A., Mosterman, P.J.: Discrete-Event Modeling and Simulation: Theory and Applications. CRC Press, Boca Raton (2016)

    Google Scholar 

  89. Yacoub, A.: Integrated Simulator of Mobile Ad-hoc Network-based Infrastructure : A Case Study. In: Spring Simulation Conference (SpringSim 2020). Society for Modeling and Simulation International (SCS), Fairfax, VA, USA (2020). https://doi.org/10.22360/SpringSim.2020.CNS.006. https://dl.acm.org/doi/abs/10.5555/3408207.3408230

  90. Yacoub, A.: Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios. arXiv:2004.14093 [cs] (2020). http://arxiv.org/abs/2004.14093. ArXiv: 2004.14093

  91. Yong, J. K., Tag, G. K.: A heterogeneous simulation framework based on the DEVS bus and the high level architecture. In: 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274), vol. 1, pp. 421–428, vol.1 (1998). https://doi.org/10.1109/WSC.1998.745017

  92. Zeigler, B.P.: Theory of modeling and simulation. Wiley, New York, NY (1976)

    MATH  Google Scholar 

  93. Zeigler, B.P., Muzy, A., Kofman, E.: Theory of Modeling and Simulation: Discrete Event & Iterative System Computational Foundations, 3rd edn. Academic (2018)

    Google Scholar 

  94. Zeigler, B.P., Sarjoughian, H.S.: Guide to Modeling and Simulation of Systems of Systems, 2nd edn. Springer, Berlin (2017)

    Google Scholar 

  95. Zhou, L., Wu, X., Xu, Z., Fujita, H.: Emergency decision making for natural disasters: an overview. Int. J. Disaster Risk Reduc. 27, 567–576 (2018)

    Google Scholar 

  96. Zsambok, C.E., Klein, G.: Naturalistic Decision Making. Psychology Press (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard P. Zeigler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alshareef, A., Blas, M.J., Bonaventura, M., Paris, T., Yacoub, A., Zeigler, B.P. (2022). Using DEVS for Full Life Cycle Model-Based System Engineering in Complex Network Design. In: Nicopolitidis, P., Misra, S., Yang, L.T., Zeigler, B., Ning, Z. (eds) Advances in Computing, Informatics, Networking and Cybersecurity. Lecture Notes in Networks and Systems, vol 289. Springer, Cham. https://doi.org/10.1007/978-3-030-87049-2_8

Download citation

Publish with us

Policies and ethics