Skip to main content

Improving the Performance of an Operational Flood Early Warning System with the Assimilation of Satellite-Soil-Moisture Data

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Soil Moisture (SM) plays a vital role in the hydrologic cycle at watershed scale by influencing the partitioning of precipitation into infiltration, runoff, and evapotranspiration. Therefore, SM assimilation into rainfall-runoff models is considered a way to enhance their performance. Knowing if a storm event is occurring in dry or wet soil conditions means understanding if it may trigger or not a potentially hazardous flood event. Considering the scarcity of in situ SM records, satellite SM observations represent a reliable input for improving hydrologic model predictions. In this study, we assess whether the assimilation of satellite SM observations can enhance the water level simulations of an operational early warning system implemented in Uruguay for Durazno city. In particular, the possible improvement is evaluated taking into account the assimilation of SM retrievals from the Advanced SCATterometer (ASCAT). According to the results, an improvement higher than 100% was registered for peak level, and an enhancement higher than 30% was obtained for peak time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WMO: Manual on Flood Forecasting and Warning. WMO-No. 1072. ISBN 978-92-63-11072-5 (2011)

    Google Scholar 

  2. Liang, S., Wang, J.: Advanced Remote Sensing. Academic Press (2019)

    Google Scholar 

  3. Koster, R.D., Mahanama, S.P., Livneh, B., Lettenmaier, D.P., Reichle, R.H.: Skill in stream flow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci. 3, 613–616 (2010)

    Article  Google Scholar 

  4. Massari, C., Camici, S., Ciabatta, L., Brocca, L.: Exploiting satellite-based surface soil moisture for flood forecasting in the Mediterranean area: state update versus rainfall correction. Remote Sens. 10, 292 (2018)

    Article  Google Scholar 

  5. Bittelli, M.: Measuring soil water content: a review. HortTechnology 21(3), 293–300 (2011). https://doi.org/10.21273/HORTTECH.21.3.293

    Article  Google Scholar 

  6. Petropoulos, G.P., Griffiths, H., Dorigo, W., Xaver, A., Gruber, A.: Surface soil moisture estimation: significance, controls and conventional. Meas. Tech. (2013). https://doi.org/10.1201/b15610-4

    Article  Google Scholar 

  7. Srivastava, P., Kerr, Y.: Satellite Soil Moisture Retrieval: Techniques and Applications (2016)

    Google Scholar 

  8. Wang, J., Schmugge, T.: An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. GE-18(4), 288–295 (1980). https://doi.org/10.1109/TGRS.1980.350304

    Article  Google Scholar 

  9. Ulaby, F.T., Moore, M.K., Fung, A.K.: Microwave Remote Sensing, Active and Passive, vol. 3. Artech House, Norwood, MA (1986)

    Google Scholar 

  10. Mohanty, B., Cosh, M., Lakshmi, V., Montzka, C.: Soil moisture remote sensing: state-of-the-science. Vadose Zone J. 16(1), 1–9 (2017). https://doi.org/10.2136/vzj2016.10.0105

    Article  Google Scholar 

  11. Brocca, L., Moramarco, T., Melone, F., Wagner, W., Hasenauer, S., Hahn, S.: Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall–runoff modeling. IEEE Trans. Geosci. Remote Sens. 50(7), 2542–2555 (2012). https://doi.org/10.1109/TGRS.2011.2177468

    Article  Google Scholar 

  12. Matgen, P., et al.: Can ASCAT-derived soil wetness indices reduce predictive uncertainty in well-gauged areas? A comparison with in situ observed soil moisture in an assimilation application. Adv. Water Resour. 44, 49–65 (2012). https://doi.org/10.1016/j.advwatres.2012.03.022

    Article  Google Scholar 

  13. Massari, C., Brocca, L., Tarpanelli, A., Moramarco, T.: Data assimilation of satellite soil moisture into rainfall-runoff modelling: a complex recipe? Remote Sens. 7(9), 11403–11433 (2015). https://doi.org/10.3390/rs70911403

    Article  Google Scholar 

  14. Patil, A., Ramsankaran, R.A.A.J.: Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based hydrological data assimilation framework. Adv. Water Resour. 121, 173–188 (2018). https://doi.org/10.1016/j.advwatres.2018.08.010

    Article  Google Scholar 

  15. Silveira, L., Lopez, G., Chreties, C., Crisci, M.: Steps towards an early warning model for flood forecasting in Durazno city in Uruguay. J. Flood Risk Manag. 5, 270–280 (2012)

    Article  Google Scholar 

  16. Chreties, C., De Vera, A., Crisci, M., Alonso, J., Silveira, L.: Sistema de Alerta Temprana para la previsión de avenidas en la ciudad de Durazno: Evaluación de su desempeño y extensión a otras ciudades de Uruguay. In: Memorias del XXVII Congreso Latinoamericano de Hidráulica, IAHR LAD, Lima, Perú (2016)

    Google Scholar 

  17. Wanders, N., Karssenberg, D., de Roo, A., de Jong, S.M., Bierkens, M.F.P.: The suitability of remotely sensed soil moisture for improving operational flood forecasting. Hydrol. Earth Syst. Sci. 18, 2343–2357 (2014)

    Article  Google Scholar 

  18. Wagner, W., Lemoine, G., Rott, H.: A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sens. Environ. 70, 191–207 (1999)

    Article  Google Scholar 

  19. ASCAT Soil Moisture product: Available: http://200.16.81.92/geoexplorer/composer/#Humedad_de_Suelo:_ASCAT_Advanced. Last accessed 10 May 2021

  20. Brocca, L., et al.: River flow prediction in data scarce regions: soil moisture integrated satellite rainfall products outperform rain gauge observations in West Africa. Sci. Rep. 10, 12517 (2020)

    Article  Google Scholar 

  21. Cenci, L., et al.: An evaluation of the potential of Sentinel 1 for improving flash flood predictions via soil moisture–data assimilation. Adv. Geosci. 44, 89–100 (2017). https://doi.org/10.5194/adgeo-44-89-2017

    Article  Google Scholar 

  22. Precipitation and water-level data: Available: https://portal.ute.com.uy/precipitaciones-ocurridas-y-prevision-de-niveles. Last accessed 10 May 2021

  23. CONEAT soil map: Available: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/tramites-y-servicios/servicios/consulta-coneat. Last accessed 10 May 2021

  24. Molfino, J.H., Califra, A.: Agua Disponible de las Tierras del Uruguay. División de Suelos y Aguas, Ministerio de Ganadería Agricultura y Pesca, Uruguay (2001)

    Google Scholar 

  25. MGAP: Carta de Reconocimiento de Suelos del Uruguay, vol. 111. Ministerio de Ganadería, Agricultura y Pesca, Dirección de Suelos y Aguas (1979)

    Google Scholar 

  26. Soil recognition map of Uruguay: Available: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/politicas-y-gestion/carta-reconocimiento-suelos-del-uruguay-escala-11000000. Last accessed 10 May 2021

  27. Narbondo, S., Gorgoglione, A., Crisci, M., Chreties, C.: Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions. Water 12, 528 (2020). https://doi.org/10.3390/w12020528

    Article  Google Scholar 

  28. USDA: Part 630 Hydrology -National Engineering Handbook (NEH). Natural Resources Conservation Service, U.S. Department of Agriculture, Washington, DC (2010)

    Google Scholar 

  29. US Army Corps of Engineers: HEC-RAS 4.1 Hydraulics Manual. US Army, Washington (2011)

    Google Scholar 

  30. Silveira, L., Chreties, C., Crisci, M., Usera, G., Alonso, A.: Sistema de Alerta Temprana Para Previsión de Avenidas En La Ciudad de Durazno. Innotec (10), 56–63. https://doi.org/10.26461/innotec.v0i10 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Chreties .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Narbondo, S., Gorgoglione, A., Chreties, C. (2021). Improving the Performance of an Operational Flood Early Warning System with the Assimilation of Satellite-Soil-Moisture Data. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics