Skip to main content

Daily Rainfall-Runoff Modeling at Watershed Scale: A Comparison Between Physically-Based and Data-Driven Models

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

In the last decades, data-driven (DD) machine-learning models have been rapidly developed and widely applied to solve hydrologic problems. To explore DD approaches’ capability in rainfall-runoff modeling compared to knowledge-driven models, we conducted a thorough comparison between Soil & Water Assessment Tool (SWAT) and Random Forest (RF) models. They were implemented to simulate the daily surface runoff at Santa Lucía Chico watershed in Uruguay. Aiming at making a fair comparison, the same input time series for RF and SWAT models were considered. Both approaches are able to represent the daily surface runoff adequately. The RF model shows a higher accuracy for calibration/training, while the SWAT model yields better results for validation/testing, indicating that the latter has a better generalization capacity. Furthermore, RF outperforms SWAT in terms of computational time needed for a proper calibration/training. Strategies to improve RF performance and interpretability should include feature selection, feature engineering and a more sophisticated sensitivity analysis technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pappenberger, F., et al.: Cascading model uncertainty from medium range weather forecasts (10 days) through a rainfall-runoff model to flood inundation predictions within the European Flood Forecasting System (EFFS). Hydrol. Earth Syst. Sci. 9(4), 381–393 (2005)

    Article  Google Scholar 

  2. Young, C.C., Liu, W.-C., Wu, M.-C.: A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Appl. Soft Comput. 53, 205–216 (2017)

    Article  Google Scholar 

  3. Narbondo, S., Gorgoglione, A., Crisci, M., Chreties, C.: Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions. Water 12, 528 (2020)

    Article  Google Scholar 

  4. Gorgoglione, A., Crisci, M., Kayser, R.H., Chreties, C., Collischonn, W.: A new scenario-based framework for conflict resolution in water allocation in transboundary watersheds. Water 11, 1174 (2019)

    Article  Google Scholar 

  5. Chang, W., Chen, X.: Monthly rainfall-runoff modeling at watershed scale: a comparative study of data-driven and theory-driven approaches. Water 10, 1116 (2018)

    Article  Google Scholar 

  6. Wang, W., Ding, J.: Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 1(1), 67–71 (2003)

    Google Scholar 

  7. Solomatine, D., Ostfeld, A.: Data-driven modelling: some past experiences and new approaches. J. Hydroinform. 10(1), 3–22 (2008). https://doi.org/10.2166/hydro.2008.015

    Article  Google Scholar 

  8. Wu, C.L., Chau, K.L.: Rainfall-runoff modelling using artificial neural network coupled with singular spectrum analysis. J. Hydrol. 399(3–4), 394–409 (2003)

    Google Scholar 

  9. Apostel, A., et al.: Simulating internal watershed processes using multiple SWAT models. Sci. Total Environ. 759, 143920 (2021). https://doi.org/10.1016/j.scitotenv.2020.143920

    Article  Google Scholar 

  10. Chen, H., Luo, Y., Potter, C., Moran, P.J., Grieneisen, M., Zhang, M.: Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Res. 121, 374–385 (2017)

    Article  Google Scholar 

  11. Pang, S., Wang, X., Melching, C., Feger, Karl-Heinz.: Development and testing of a modified SWAT model based on slope condition and precipitation intensity. J. Hydrol. 588, 125098 (2020). https://doi.org/10.1016/j.jhydrol.2020.125098

    Article  Google Scholar 

  12. Zhu, X., Wang, X., Zeng, S., Zhou, W.: Simulation of runoff and sediment yield in Zhuxi watershed in Changting county of China based on SWAT model. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, Texas (2017)

    Google Scholar 

  13. Hallouz, F., Meddi, M., Mahé, G., Alirahmani, S., Keddar, A.: Modeling of discharge and sediment transport through the SWAT model in the basin of Harazza (Northwest of Algeria). Water Sci. 32(1), 79–88 (2018)

    Article  Google Scholar 

  14. Cheng, J., et al.: Modeling the sources and retention of phosphorus nutrient in a coastal river system in China using SWAT. J. Environ. Manag. 278, 111556 (2021). https://doi.org/10.1016/j.jenvman.2020.111556

    Article  Google Scholar 

  15. Busico, G., Colombani, N., Fronzi, D., Pellegrini, M., Tazioli, A., Mastrocicco, M.: Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. J. Environ. Manag. 266, 110625 (2020). https://doi.org/10.1016/j.jenvman.2020.110625

    Article  Google Scholar 

  16. Marin, M., et al.: Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: a review. Environ. Res. 184, 109330 (2020). https://doi.org/10.1016/j.envres.2020.109330

    Article  Google Scholar 

  17. Zhang, H., Wang, B., Liu, De Li., Zhang, M., Leslie, L., Qiang, Y.: Using an improved SWAT model to simulate hydrological responses to land use change: a case study of a catchment in tropical Australia. J. Hydrol. 585, 124822 (2020). https://doi.org/10.1016/j.jhydrol.2020.124822

    Article  Google Scholar 

  18. Rezaeianzadeh, M., et al.: Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting. Int. J. Environ. Sci. Technol. 10(6), 1181–1192 (2013). https://doi.org/10.1007/s13762-013-0209-0

    Article  Google Scholar 

  19. Ahmadi, M., Moeini, A., Ahmadi, H., Motamedvaziri, B., Zehtabijan, G.R.: Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan watershed, Iran). Phys. Chem. Earth A/B/C 111, 65–77 (2019)

    Article  Google Scholar 

  20. Li, M., Zhang, Y., Wallace, J., Campbell, E.: Estimating annual runoff in response to forest change: a statistical method based on random forest. J. Hydrol. 589, 125168 (2020). https://doi.org/10.1016/j.jhydrol.2020.125168

    Article  Google Scholar 

  21. Desai, S., Ouarda, T.: Regional hydrological frequency analysis at ungauged sites with random forest regression. J. Hydrol. 594, 125861 (2021). https://doi.org/10.1016/j.jhydrol.2020.125861

    Article  Google Scholar 

  22. Muñoz, P., Orellana-Alvear, J., Willems, P., Célleri, R.: Flash-flood forecasting in an Andean Mountain catchment—development of a step-wise methodology based on the random forest algorithm. Water 10(11), 1519 (2018). https://doi.org/10.3390/w10111519

    Article  Google Scholar 

  23. Pini, M., Scalvini, A., Liaqat, M.U., Ranzi, R., Serina, I., Mehmood, T.: Evaluation of machine learning techniques for inflow prediction in Lake Como, Italy. Procedia Comput. Sci. 176, 918–927 (2020)

    Article  Google Scholar 

  24. Schoppa, L., Disse, M., Bachmair, S.: Evaluating the performance of random forest for large-scale flood discharge simulation. J. Hydrol. 590, 125531 (2020). https://doi.org/10.1016/j.jhydrol.2020.125531

    Article  Google Scholar 

  25. Abbasi, M., Farokhnia, A., Bahreinimotlagh, M., Roozbahani, R.: A hybrid of random forest and deep auto-encoder with support vector regression methods for accuracy improvement and uncertainty reduction of long-term streamflow prediction. J. Hydrol. (2020). https://doi.org/10.1016/j.jhydrol.2020.125717

    Article  Google Scholar 

  26. Adnan, R.M., Petroselli, A., Heddam, S., Guimaräes, C.A., Kisi, O.: Comparison of different methodologies for rainfall-runoff modelling: machine learning vs conceptual approach. Nat. Hazards 105, 2987–3011 (2021)

    Article  Google Scholar 

  27. Gorgoglione, A., Gregorio, J., Ríos, A., Alonso, J., Chreties, C., Fossati, M.: Influence of land use/land cover on surface-water quality of Santa Lucía River, Uruguay. Sustainability 12(11), 4692 (2020)

    Article  Google Scholar 

  28. MGAP: Uruguayan Integrated Land Use/Land Cover Map. Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/mapa-integrado-coberturauso-del-suelo-del-uruguay-ano-2018 (2018). Accessed 22 March 2021

  29. MGAP: Soil classification with CONEAT productivity index for Uruguayan soils. Available: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/tramites-y-servicios/servicios/consulta-coneat. Accessed 24 March 2021

  30. MGAP: Digital terrain map of Uruguay. Available: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/tramites-y-servicios/servicios/modelo-digital-terreno. Accessed 24 March 2021

  31. Abbaspour, K., et al.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 333(2–4), 413–430 (2007). https://doi.org/10.1016/j.jhydrol.2006.09.014

    Article  Google Scholar 

  32. Brieman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12(85), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Abbaspour, K., Vaghefi, S., Srinivasan, R.: A guideline for successful calibration and uncertainty analysis for soil and water assessment: a review of papers from the 2016 International SWAT Conference. Water 10(1), 6 (2017). https://doi.org/10.3390/w10010006

    Article  Google Scholar 

  35. Mer, F., et al.: SWAT Subcuenca Santa Lucia. https://doi.org/10.17605/OSF.IO/UQB5J (2020, October 11)

  36. Abbaspour, K.C., Johnson, C.A., van Genuchten, M.: Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J. 3(4), 1340–1352 (2004). https://doi.org/10.2136/vzj2004.1340

    Article  Google Scholar 

  37. Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., Kløve, B.: A continental-scale hydrology and water quality model for Europe: calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 524, 733–752 (2015). https://doi.org/10.1016/j.jhydrol.2015.03.027

    Article  Google Scholar 

  38. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L.: Model evaluation guidelines for systematic quantification and accuracy in watershed simulations. Trans. ASABE 50(3), 885–900 (2007)

    Article  Google Scholar 

  39. Lundberg, S.M., Lee, S.: A unified approach to interpreting model predictions. In: 31st Conference on Neural Information Processing Systems (NIPS), Long Beach, California, USA. arXiv:1705.07874 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Vilaseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vilaseca, F., Castro, A., Chreties, C., Gorgoglione, A. (2021). Daily Rainfall-Runoff Modeling at Watershed Scale: A Comparison Between Physically-Based and Data-Driven Models. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12955. Springer, Cham. https://doi.org/10.1007/978-3-030-87007-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87007-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87006-5

  • Online ISBN: 978-3-030-87007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics