Skip to main content

Advances in Surgical Techniques for Robotic Computer-Navigated Total and Unicompartmental Knee Arthroplasty

  • Chapter
  • First Online:
Critical Rehabilitation for Partial and Total Knee Arthroplasty

Abstract

Robotic-assisted knee arthroplasty has become increasingly commercially available as both technology developers and surgeons attempt to address specific limitations of conventional jig-based alignment techniques in order to improve resection accuracy and precision. Semi-active and passive systems predominate in the North American and European markets and can provide surgeons additional instruments for intraoperative calibration and balance assessment or directly assist in performing personalized resections. Recently published and ongoing clinical investigations seek to determine if robotic assistance may result in improved radiographic or clinical outcomes for patients undergoing either unicompartmental or total knee arthroplasty. A number of studies evaluating conventional and robotic-assisted knee arthroplasty did not identify significant radiographic or clinical outcome differences, though heterogeneity in robotic system design and application may limit the generalization of focused studies. Conversely, some studies that identified significant differences noted that robotic-assisted knee arthroplasty may be associated with fewer alignment outliers as well as increased surgical time—at least initially for unfamiliar surgeons. Further limitations include limited follow-up for newer systems on the market as well as the associated variety of arthroplasty implants and authors’ surgical techniques. Future studies will help surgeons and patients determine if intraoperative robotic assistance may be beneficial in total knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References (EndNote Traveling Library)

  1. Gatti CJ, Hallstrom BR, Hughes RE. Surgeon variability in total knee arthroplasty component alignment: a Monte Carlo analysis. Comput Methods Biomech Biomed Engin. 2014;17(15):1738–50.

    Article  PubMed  Google Scholar 

  2. Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop Relat Res. 1998;354:82–91.

    Article  Google Scholar 

  3. Maradit Kremers H, Larson DR, Crowson CS, Kremers WK, Washington RE, Steiner CA, et al. Prevalence of total hip and knee replacement in the United States. J Bone Joint Surg Am. 2015;97(17):1386–97.

    Article  PubMed  Google Scholar 

  4. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ. Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res. 2010;468(1):57–63.

    Article  PubMed  Google Scholar 

  5. Clement ND, Burnett R. Patient satisfaction after total knee arthroplasty is affected by their general physical well-being. Knee Surg Sports Traumatol Arthrosc. 2013;21(11):2638–46.

    Article  CAS  PubMed  Google Scholar 

  6. Nam D, Nunley RM, Barrack RL. Patient dissatisfaction following total knee replacement. The Bone & Joint Journal. 2014;96-B(11_Supple_A):96–100.

    Article  CAS  Google Scholar 

  7. Von Keudell A, Sodha S, Collins J, Minas T, Fitz W, Gomoll AH. Patient satisfaction after primary total and unicompartmental knee arthroplasty: an age-dependent analysis. Knee. 2014;21(1):180–4.

    Article  Google Scholar 

  8. Noble PC, Conditt MA, Cook KF, Mathis KB. The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res. 2006;452:35–43.

    Article  PubMed  Google Scholar 

  9. Gunaratne R, Pratt DN, Banda J, Fick DP, Khan RJK, Robertson BW. Patient dissatisfaction following total knee arthroplasty: a systematic review of the literature. J Arthroplasty. 2017;32(12):3854–60.

    Article  PubMed  Google Scholar 

  10. Naal FD, Fischer M, Preuss A, Goldhahn J, von Knoch F, Preiss S, et al. Return to sports and recreational activity after unicompartmental knee arthroplasty. Am J Sports Med. 2007;35(10):1688–95.

    Article  PubMed  Google Scholar 

  11. Hopper GP, Leach WJ. Participation in sporting activities following knee replacement: total versus unicompartmental. Knee Surg Sports Traumatol Arthrosc. 2008;16(10):973.

    Article  PubMed  Google Scholar 

  12. Liddle AD, Judge A, Pandit H, Murray DW. Adverse outcomes after total and unicompartmental knee replacement in 101 330 matched patients: a study of data from the National Joint Registry for England and Wales. Lancet. 2014;384(9952):1437–45.

    Article  PubMed  Google Scholar 

  13. W-Dahl A, Robertsson O, Lidgren L, Miller L, Davidson D, Graves S. Unicompartmental knee arthroplasty in patients aged less than 65. Acta Orthop. 2010;81(1):90–4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Koskinen E, Paavolainen P, Eskelinen A, Pulkkinen P, Remes V. Unicondylar knee replacement for primary osteoarthritis: a prospective follow-up study of 1,819 patients from the Finnish Arthroplasty Register. Acta Orthop. 2007;78(1):128–35.

    Article  PubMed  Google Scholar 

  15. Liddle AD, Pandit H, Judge A, Murray DW. Effect of surgical caseload on revision rate following total and unicompartmental knee replacement. JBJS. 2016;98(1):1–8.

    Article  Google Scholar 

  16. Badawy M, Fenstad AM, Bartz-Johannessen CA, Indrekvam K, Havelin LI, Robertsson O, et al. Hospital volume and the risk of revision in Oxford unicompartmental knee arthroplasty in the Nordic countries -an observational study of 14,496 cases. BMC Musculoskelet Disord. 2017;18(1):388.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Christ AB, Pearle AD, Mayman DJ, Haas SB. Robotic-assisted unicompartmental knee arthroplasty: state-of-the art and review of the literature. J Arthroplasty. 2018;33(7):1994–2001.

    Article  PubMed  Google Scholar 

  18. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, et al. Robotic systems in orthopaedic surgery. J Bone Joint Surg Br. 2011;93(10):1296–9.

    Article  CAS  PubMed  Google Scholar 

  19. Schneider O, Troccaz J. A six-degree-of-freedom passive arm with dynamic constraints (PADyC) for cardiac surgery application: preliminary experiments. Comput Aided Surg. 2001;6(6):340–51.

    Article  CAS  PubMed  Google Scholar 

  20. Siddiqi A, Mont MA, Krebs VE, Piuzzi NS. Not all robotic-assisted total knee arthroplasty are the same. J Am Acad Orthop Surg. 2021;29(2):45–59.

    Article  PubMed  Google Scholar 

  21. Jacofsky DJ, Allen M. Robotics in arthroplasty: a comprehensive review. J Arthroplasty. 2016;31(10):2353–63.

    Article  PubMed  Google Scholar 

  22. Park SE, Lee CT. Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty. 2007;22(7):1054–9.

    Article  PubMed  Google Scholar 

  23. Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9(3):173–80.

    Article  PubMed  Google Scholar 

  24. Elmallah RK, Mistry JB, Cherian JJ, Chughtai M, Bhave A, Roche MW, et al. Can we really “Feel” a balanced total knee arthroplasty? J Arthroplasty. 2016;31(9, Supplement):102–5.

    Article  PubMed  Google Scholar 

  25. D'Lima DD, Patil S, Steklov N, Colwell CW Jr. An ABJS best paper: dynamic intraoperative ligament balancing for total knee arthroplasty. Clin Orthop Relat Res. 2007;463:208–12.

    Article  PubMed  Google Scholar 

  26. Cho KJ, Seon JK, Jang WY, Park CG, Song EK. Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. BMC Musculoskelet Disord. 2018;19(1):266.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Geller JA, Lakra A, Murtaugh T. The use of electronic sensor device to augment ligament balancing leads to a lower rate of arthrofibrosis after total knee arthroplasty. J Arthroplasty. 2017;32(5):1502–4.

    Article  PubMed  Google Scholar 

  28. Christensen CM. The innovator's dilemma : when new technologies cause great firms to fail. Boston: Harvard Business Review Press; 2013. xxvii, 252 pages p.

    Google Scholar 

  29. Lonner JH, Klement MR. Robotic-assisted medial unicompartmental knee arthroplasty: options and outcomes. J Am Acad Orthop Surg. 2019;27(5):e207–e14.

    Article  PubMed  Google Scholar 

  30. Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can robot-assisted unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplasty. 2016;31(4):759–65.

    Article  PubMed  Google Scholar 

  31. Pearle AD, Kendoff D, Musahl V. Perspectives on computer-assisted orthopaedic surgery: movement toward quantitative orthopaedic surgery. J Bone Joint Surg Am. 2009;91 Suppl 1:7–12.

    Article  PubMed  Google Scholar 

  32. Kayani B, Konan S, Ayuob A, Onochie E, Al-Jabri T, Haddad FS. Robotic technology in total knee arthroplasty: a systematic review. EFORT Open Rev. 2019;4(10):611–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kayani B, Konan S, Huq SS, Tahmassebi J, Haddad FS. Robotic-arm assisted total knee arthroplasty has a learning curve of seven cases for integration into the surgical workflow but no learning curve effect for accuracy of implant positioning. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1132–41.

    Article  PubMed  Google Scholar 

  34. Grau L, Lingamfelter M, Ponzio D, Post Z, Ong A, Le D, et al. Robotic arm assisted total knee arthroplasty workflow optimization, operative times and learning curve. Arthroplast Today. 2019;5(4):465–70.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Davies BL, Rodriguez y Baena FM, Barrett AR, Gomes MP, Harris SJ, Jakopec M, et al. Robotic control in knee joint replacement surgery. Proc Inst Mech Eng H. 2007;221(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  36. Shatrov J, Parker D. Computer and robotic – assisted total knee arthroplasty: a review of outcomes. J Exp Orthop. 2020;7(1):70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Banger MS, Johnston WD, Razii N, Doonan J, Rowe PJ, Jones BG, et al. Robotic arm-assisted bi-unicompartmental knee arthroplasty maintains natural knee joint anatomy compared with total knee arthroplasty: a prospective randomized controlled trial. Bone Joint J. 2020;102-B(11):1511–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL. Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty. 2014;29(12):2373–7.

    Article  PubMed  Google Scholar 

  39. Yang HY, Seon JK, Shin YJ, Lim HA, Song EK. Robotic total knee arthroplasty with a cruciate-retaining implant: a 10-year follow-up study. Clin Orthop Surg. 2017;9(2):169–76.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL. Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res. 2013;471(1):118–26.

    Article  PubMed  Google Scholar 

  41. Kim YH, Yoon SH, Park JW. Does robotic-assisted TKA result in better outcome scores or long-term survivorship than conventional TKA? A randomized. Controlled Trial Clin Orthop Relat Res. 2020;478(2):266–75.

    Article  PubMed  Google Scholar 

  42. Ollivier M, Parratte S, Lunebourg A, Viehweger E, Argenson JN. The John Insall Award: no functional benefit after unicompartmental knee arthroplasty performed with patient-specific instrumentation: a randomized trial. Clin Orthop Relat Res. 2016;474(1):60–8.

    Article  PubMed  Google Scholar 

  43. Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M. Improved accuracy of component positioning with robotic-assisted unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am. 2016;98(8):627–35.

    Article  PubMed  Google Scholar 

  44. Suero EM, Plaskos C, Dixon PL, Pearle AD. Adjustable cutting blocks improve alignment and surgical time in computer-assisted total knee replacement. Knee Surg Sports Traumatol Arthrosc. 2012;20(9):1736–41.

    Article  PubMed  Google Scholar 

  45. Dawson J, Fitzpatrick R, Murray D, Carr A. Questionnaire on the perceptions of patients about total knee replacement. J Bone Joint Surg Br. 1998;80(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  46. Roos EM, Toksvig-Larsen S. Knee injury and Osteoarthritis Outcome Score (KOOS) - validation and comparison to the WOMAC in total knee replacement. Health Qual Life Outcomes. 2003;1:17.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–4.

    Article  Google Scholar 

  48. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15(12):1833–40.

    CAS  PubMed  Google Scholar 

  49. Bellamy N. WOMAC: a 20-year experiential review of a patient-centered self-reported health status questionnaire. J Rheumatol. 2002;29(12):2473–6.

    PubMed  Google Scholar 

  50. Collins NJ, Misra D, Felson DT, Crossley KM, Roos EM. Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care Res (Hoboken). 2011;63 Suppl 11:S208–28.

    Article  Google Scholar 

  51. Binkley JM, Stratford PW, Lott SA, Riddle DL. The Lower Extremity Functional Scale (LEFS): scale development, measurement properties, and clinical application. North American Orthopaedic Rehabilitation Research Network. Phys Ther. 1999;79(4):371–83.

    CAS  PubMed  Google Scholar 

  52. Naal FD, Impellizzeri FM, Leunig M. Which is the best activity rating scale for patients undergoing total joint arthroplasty? Clin Orthop Relat Res. 2009;467(4):958–65.

    Article  PubMed  Google Scholar 

  53. Dunbar MJ, Robertsson O, Ryd L, Lidgren L. Appropriate questionnaires for knee arthroplasty. Results of a survey of 3600 patients from the Swedish Knee Arthroplasty Registry. J Bone Joint Surg Br. 2001;83(3):339–44.

    Article  CAS  PubMed  Google Scholar 

  54. Ware J Jr, Kosinski M, Keller SD. A 12-item short-form health survey: construction of scales and preliminary tests of reliability and validity. Med Care. 1996;34(3):220–33.

    Article  PubMed  Google Scholar 

  55. Ware JE Jr, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–83.

    Article  PubMed  Google Scholar 

  56. Bergner M, Bobbitt RA, Carter WB, Gilson BS. The sickness impact profile: development and final revision of a health status measure. Med Care. 1981;19(8):787–805.

    Article  CAS  PubMed  Google Scholar 

  57. Liow MHL, Chin PL, Pang HN, Tay DK, Yeo SJ. THINK surgical TSolution-one((R)) (Robodoc) total knee arthroplasty. SICOT J. 2017;3:63.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Yim JH, Song EK, Khan MS, Sun ZH, Seon JK. A comparison of classical and anatomical total knee alignment methods in robotic total knee arthroplasty: classical and anatomical knee alignment methods in TKA. J Arthroplasty. 2013;28(6):932–7.

    Article  PubMed  Google Scholar 

  59. Yeo JH, Seon JK, Lee DH, Song EK. No difference in outcomes and gait analysis between mechanical and kinematic knee alignment methods using robotic total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. 2019;27(4):1142–7.

    Article  PubMed  Google Scholar 

  60. Khlopas A, Sodhi N, Hozack WJ, Chen AF, Mahoney OM, Kinsey T, et al. Patient-reported functional and satisfaction outcomes after robotic-arm-assisted total knee arthroplasty: early results of a prospective multicenter investigation. J Knee Surg. 2020;33(7):685–90.

    Article  PubMed  Google Scholar 

  61. Kayani B, Konan S, Tahmassebi J, Pietrzak JRT, Haddad FS. Robotic-arm assisted total knee arthroplasty is associated with improved early functional recovery and reduced time to hospital discharge compared with conventional jig-based total knee arthroplasty: a prospective cohort study. Bone Joint J. 2018;100-B(7):930–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Naziri Q, Cusson BC, Chaudhri M, Shah NV, Sastry A. Making the transition from traditional to robotic-arm assisted TKA: what to expect? A single-surgeon comparative-analysis of the first-40 consecutive cases. J Orthop. 2019;16(4):364–8.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Marchand RC, Sodhi N, Khlopas A, Sultan AA, Harwin SF, Malkani AL, et al. Patient satisfaction outcomes after robotic arm-assisted Total knee arthroplasty: a short-term evaluation. J Knee Surg. 2017;30(9):849–53.

    Article  PubMed  Google Scholar 

  64. Marchand RC, Sodhi N, Anis HK, Ehiorobo J, Newman JM, Taylor K, et al. One-year patient outcomes for robotic-arm-assisted versus manual total knee arthroplasty. J Knee Surg. 2019;32(11):1063–8.

    Article  PubMed  Google Scholar 

  65. Mahoney O, Kinsey T, Sodhi N, Mont MA, Chen AF, Orozco F, et al. Improved component placement accuracy with robotic-arm assisted total knee arthroplasty. J Knee Surg. 2020.

    Google Scholar 

  66. Smith AF, Eccles CJ, Bhimani SJ, Denehy KM, Bhimani RB, Smith LS, et al. Improved patient satisfaction following robotic-assisted total knee arthroplasty. J Knee Surg. 2021;34(7):730–8.

    Article  PubMed  Google Scholar 

  67. Hozack WJ. Multicentre analysis of outcomes after robotic-arm assisted total knee arthroplasty. Orthop Proc. 2018;100-B(SUPP_12):38.

    Google Scholar 

  68. Zhang J, Ndou WS, Ng N, Gaston P, Simpson PM, Macpherson GJ, et al. Robotic-arm assisted total knee arthroplasty is associated with improved accuracy and patient reported outcomes: a systematic review and meta-analysis. Knee Surg Sports Traumatol Arthrosc. 2021.

    Google Scholar 

  69. Gilmour A, MacLean AD, Rowe PJ, Banger MS, Donnelly I, Jones BG, et al. Robotic-arm-assisted vs conventional unicompartmental knee arthroplasty. The 2-year clinical outcomes of a randomized controlled trial. J Arthroplasty. 2018;33(7S):S109–S15.

    Article  PubMed  Google Scholar 

  70. Pearle AD, van der List JP, Lee L, Coon TM, Borus TA, Roche MW. Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee. 2017;24(2):419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Motesharei A, Rowe P, Blyth M, Jones B, Maclean A. A comparison of gait one year post operation in an RCT of robotic UKA versus traditional Oxford UKA. Gait Posture. 2018;62:41–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Kerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerr, D.L., Cochrane, N.H., Anastasio, A.T., Charalambous, L.T., Wu, M., Seyler, T.M. (2022). Advances in Surgical Techniques for Robotic Computer-Navigated Total and Unicompartmental Knee Arthroplasty. In: Noyes, F.R., Barber-Westin, S. (eds) Critical Rehabilitation for Partial and Total Knee Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-030-87003-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87003-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87002-7

  • Online ISBN: 978-3-030-87003-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics