Skip to main content

Improving the Performance of Lindig-Style Algorithms with Empty Intersections

  • Conference paper
  • First Online:
Graph-Based Representation and Reasoning (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12879))

Included in the following conference series:

  • 357 Accesses

Abstract

The building of a concept lattice and its line diagram from a set of formal concepts is an important task in formal concept analysis (FCA), since it allows one to express relationships among formal concepts in a concise and comprehensible form. One may enumerate direct neighbors of each formal concept and build a concept lattice or its line diagram in a straightforward way. This is the main idea behind the algorithm proposed by Lindig. This algorithm, as well as other algorithms in FCA, must contend with the fact that some formal concepts are enumerated multiple times. In practice a substantial amount of redundant computations is related to the top (or bottom) formal concept. The In-Close4 algorithm came up with an optimization technique that allows one to eliminate such redundant computations and significantly improves the performance of algorithms from the Close-by-One family. We show that this technique can be used in the Lindig-type algorithms to improve their performance as well.

The research was supported by the grant JG 2019 of Palacký University Olomouc, No. JG_2019_008.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, S.: In-close, a fast algorithm for computing formal concepts. In: Rudolph, S., Dau, F., Kuznetsov, S.O. (eds.) Proceedings of ICCS 2009. CEUR Workshop Proceedings, vol. 483. CEUR-WS.org (2009)

    Google Scholar 

  2. Andrews, S.: In-Close2, a high performance formal concept miner. In: Andrews, S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS 2011. LNCS (LNAI), vol. 6828, pp. 50–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22688-5_4

    Chapter  Google Scholar 

  3. Andrews, S.: A ‘best-of-breed’ approach for designing a fast algorithm for computing fixpoints of Galois connections. Inf. Sci. 295, 633–649 (2015). https://doi.org/10.1016/j.ins.2014.10.011

    Article  MathSciNet  MATH  Google Scholar 

  4. Andrews, S.: Making use of empty intersections to improve the performance of CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 56–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59271-8_4

    Chapter  Google Scholar 

  5. Andrews, S.: A new method for inheriting canonicity test failures in close-by-one type algorithms. In: Ignatov, D.I., Nourine, L. (eds.) Proceedings of the Fourteenth International Conference on Concept Lattices and Their Applications, CLA 2018, Olomouc, Czech Republic, 12–14 June 2018. CEUR Workshop Proceedings, vol. 2123, pp. 255–266. CEUR-WS.org (2018)

    Google Scholar 

  6. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Lindig’s algorithm for concept lattices over graded attributes. In: Torra, V., Narukawa, Y., Yoshida, Y. (eds.) MDAI 2007. LNCS (LNAI), vol. 4617, pp. 156–167. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73729-2_15

    Chapter  MATH  Google Scholar 

  7. Belohlávek, R., Trnecka, M.: Basic level of concepts in formal concept analysis 1: formalization and utilization. Int. J. Gen. Syst. 49(7), 689–706 (2020)

    Article  MathSciNet  Google Scholar 

  8. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Mathématiques et Sciences humaines 96, 31–47 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. Wiley, Hoboken (2004)

    Book  Google Scholar 

  10. Carpineto, C., Romano, G.: Exploiting the potential of concept lattices for information retrieval with CREDO. J. Univers. Comput. Sci. 10(8), 985–1013 (2004)

    MATH  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  12. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  13. Konecny, J., Krajča, P.: Pruning in map-reduce style CbO algorithms. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 103–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_8

    Chapter  Google Scholar 

  14. Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48247-5_47

    Chapter  Google Scholar 

  15. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)

    Article  Google Scholar 

  16. Lindig, C., Gbr, G.: Fast concept analysis. In: Working with Conceptual Structures - Contributions to ICCS 2000 (2000)

    Google Scholar 

  17. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: a new incremental algorithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24651-0_31

    Chapter  MATH  Google Scholar 

  18. Nourine, L., Raynaud, O.: A fast algorithm for building lattices. Inf. Process. Lett. 71(5–6), 199–204 (1999)

    Article  MathSciNet  Google Scholar 

  19. Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Krajča .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krajča, P. (2021). Improving the Performance of Lindig-Style Algorithms with Empty Intersections. In: Braun, T., Gehrke, M., Hanika, T., Hernandez, N. (eds) Graph-Based Representation and Reasoning. ICCS 2021. Lecture Notes in Computer Science(), vol 12879. Springer, Cham. https://doi.org/10.1007/978-3-030-86982-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86982-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86981-6

  • Online ISBN: 978-3-030-86982-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics