Skip to main content

Ecosystem Services and Land Take. A Composite Indicator for the Assessment of Sustainable Urban Projects

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

The worrying levels of land take and insufficient ecosystem services related to phenomena of uncontrolled urban expansion in the cities force many countries far away from achieving Sustainable Development Goals of Agenda 2030. It is necessary to promote strategies which lead to effective and efficient measures in the perspective of sustainable development.

The work aim is to propose an evaluation protocol useful to support public and private subjects for sustainable practices in urban contexts. Depending on the types of use and land cover envisaged, the implementation of the proposed methodological framework allows for the definition of a Composite Indicator (CI) to measure the urban environmental and economic sustainability level. The proposed CI expresses qualitatively and quantitatively the socio-economic and environmental impact (trade-off) that single initiative generates in the reference context in terms of ecosystem services as a function of the land use change between ex-ante and ex-post phases of the urban transformation process.

Multi-parameter methodological approach by a sequence of logical-operational phases that lead to the definition of the CI is proposed. Steps of the proposed method are characterized by the algebraic structures typical of the Benefit of Doubt Approach (BDA) and Goal programming principles. Testing of the proposed protocol for CI construction is in progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations: The Sustainable Development Goals Report (2020)

    Google Scholar 

  2. Kovacs, E., Hoaghia, M.A., Senila, L., Scurtu, D.A., Dumitras, D.E., Roman, C.: Sustainability problematization and modeling opportunities. Sustainability 12(23), 10046 (2020)

    Article  Google Scholar 

  3. Banga, J.: The green bond market: a potential source of climate finance for developing countries. J. Sustain. Finan. Invest. 9(1), 17–32 (2019)

    Article  Google Scholar 

  4. Park, S.K.: Investors as regulators: Green bonds and the governance challenges of the sustainable finance revolution. Stanford J. Int. Law 54, 1 (2018)

    Google Scholar 

  5. UNEP, I.: Preventing the Next Pandemic: Zoonotic Diseases and How to Break the Chain of Transmission, p. 82. United Nations Environment Programme (UNEP) and International Livestock Research Institute (ILRI), Nairobi, Kenya (2020)

    Google Scholar 

  6. IPBES: Global Assessment Report on Biodiversity and Ecosystem Services (2019)

    Google Scholar 

  7. Rubino, I., Coscia, C., Curto, R.: Identifying spatial relationships between built heritage resources and short-term rentals before the Covid-19 pandemic: exploratory perspectives on sustainability issues. Sustainability (Switzerland) 12(11), 4533 (2020)

    Article  Google Scholar 

  8. OECD: Measuring Distance to the SDG Targets 2019: An Assessment of Where OECD Countries Stand. OECD Publishing, Paris (2019)

    Book  Google Scholar 

  9. Coscia, C., Curto, R.: Valorising in the absence of public resources and weak markets: the case of “Ivrea, the 20th century industrial city.” Green Energy Technol. 9783319496757, 79–99 (2017)

    Article  Google Scholar 

  10. European Commission: Non solo Pil. Misurare il progresso in un mondo in cambiamento. Comunicazione della Commissione al Consiglio e al Parlamento europeo. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52009DC0433 (2009). Ultimo accesso: 27 March 2021

  11. European Statistical System Committee: Sponsorship Group on Measuring Progress, Well-being and Sustainable Development. Final Report. Adopted by the European Statistical System Committee November 2011. Available: https://ec.europa.eu/eurostat/documents/7330775/7339383/SpG-Final-report-Progress-wellbeing-and-sustainabl%20deve/428899a4-9b8d-450c-a511-ae7ae35587cb (2011)

  12. Coscia, C., Chiaravalloti, T.: Vuoti urbani e patrimonio del demanio storico-artistico: una road map per l’ex Carlo Alberto di Acqui Terme (ITA). Urban voids and public historical-artistic heritage: a road map for the Carlo Alberto complex of Acqui Terme. Territorio 84, 128–142 (2018). https://doi.org/10.3280/TR2018-084019

    Article  Google Scholar 

  13. ASviS, L.: l’Italia e gli Obiettivi di sviluppo sostenibile (2020)

    Google Scholar 

  14. Istat, R.S.: informazioni statistiche per l’Agenda 2030 in Italia (2020)

    Google Scholar 

  15. Guarini, M., Nesticò, A., Morano, P., Sica, F.: A multicriteria economic analysis model for urban forestry projects. In: Calabrò, F., Spina, L.D., Bevilacqua, C. (eds.) New Metropolitan Perspectives: Local Knowledge and Innovation Dynamics Towards Territory Attractiveness Through the Implementation of Horizon/E2020/Agenda2030 – Volume 1, pp. 564–571. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_63

    Chapter  Google Scholar 

  16. Coscia, C., Lazzari, G., Rubino, I.: Values, memory, and the role of exploratory methods for policy-design processes and the sustainable redevelopment of waterfront contexts: the case of Officine Piaggio (Italy). Sustainability 10(9), 2989 (2018). https://doi.org/10.3390/su10092989

    Article  Google Scholar 

  17. Elmqvist, T., et al.: Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities: A Global Assessment, p. 755. Springer Nature (2013)

    Google Scholar 

  18. Millennium ecosystem assessment, M.E.A.: Ecosystems and Human Well-being, vol. 5. Island Press, Washington, DC (2005)

    Google Scholar 

  19. Cerreta, M., Panaro, S., Poli, G.: A spatial decision support system for multifunctional landscape assessment: a transformative resilience perspective for vulnerable inland areas. Sustainability 13(5), 2748 (2021)

    Article  Google Scholar 

  20. Coscia, C., Rubino, I.: Fostering new value chains and social impact-oriented strategies in urban regeneration processes: what challenges for the evaluation discipline? Smart Innov. Syst. Technol. 178 SIST, 983–992 (2021)

    Article  Google Scholar 

  21. Guarini, M., Morano, P., Sica, F.: Eco-system Services and Integrated Urban Planning. A Multi-criteria Assessment Framework for Ecosystem Urban Forestry Projects. In: Mondini, G., Oppio, A., Stanghellini, S., Bottero, M., Abastante, F. (eds.) Values and Functions for Future Cities. GET, pp. 201–216. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23786-8_11

    Chapter  Google Scholar 

  22. De Filippi, F., Coscia, C., Guido, R.: From smart-cities to smart-communities: how can we evaluate the impacts of innovation and inclusive processes in urban context? Int. J. E-Plan Res. 8(2), 24–44 (2019)

    Google Scholar 

  23. El Gibari, S., Gómez, T., Ruiz, F.: Building composite indicators using multicriteria methods: a review. J. Bus. Econ. 89(1), 1–24 (2018). https://doi.org/10.1007/s11573-018-0902-z

    Article  Google Scholar 

  24. Danielis, R., Rotaris, L., Monte, A.: Composite indicators of sustainable urban mobility: estimating the rankings frequency distribution combining multiple methodologies. Int. J. Sustain. Transp. 12(5), 380–395 (2018)

    Article  Google Scholar 

  25. Asadzadeh, A., Kötter, T., Salehi, P., Birkmann, J.: Operationalizing a concept: the systematic review of composite indicator building for measuring community disaster resilience. Int. J. Disaster Risk Reduct. 25, 147–162 (2017)

    Article  Google Scholar 

  26. Aparicio, J., Kapelko, M., Monge, J.F.: A well-defined composite indicator: an application to corporate social responsibility. J. Optim. Theory Appl. 186(1), 299–323 (2020). https://doi.org/10.1007/s10957-020-01701-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Sardi, A., Sorano, E., Cantino, V., Garengo, P.: Big data and performance measurement research: Trends, evolution and future opportunities. Meas. Bus. Excell. (2020)

    Google Scholar 

  28. Morano, P., Guarini, M., Tajani, F., Anelli, D.: Sustainable Redevelopment: The Cost-Revenue Analysis to Support the Urban Planning Decisions. In: Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Ana, M.A., Rocha, C., Tarantino, E., Torre, C.M., Karaca, Y. (eds.) Computational Science and Its Applications – ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part III, pp. 968–980. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_69

    Chapter  Google Scholar 

  29. Guarini, M.R., D’Addabbo, N., Morano, P., Tajani, F.: Multi-criteria analysis in compound decision processes: the AHP and the architectural competition for the chamber of deputies in Rome (Italy). Buildings 7(2), 38 (2017). https://doi.org/10.3390/buildings7020038

    Article  Google Scholar 

  30. Tajani, F., Morano, P., Locurcio, M., D’Addabbo, N.: Property valuations in times of crisis: artificial neural networks and evolutionary algorithms in comparison. In: Gervasi, O., Murgante, B., Misra, S., Gavrilova, M.L., Rocha, A.M.A.C., Torre, C., Taniar, D., Apduhan, B.O. (eds.) Computational Science and Its Applications – ICCSA 2015, pp. 194–209. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-21470-2_14

    Chapter  Google Scholar 

  31. Dobrovolskienė, N., et al.: Developing a composite sustainability index for real estate projects using multiple criteria decision making. Oper. Res. Int. J. 19(3), 617–635 (2017). https://doi.org/10.1007/s12351-017-0365-y

    Article  Google Scholar 

  32. Fregonara, E., Coscia, C.: Multi criteria analyses, life cycle approaches and Delphi method: a methodological proposal to assess design scenarios | Analisi multi criteria, approcci life cycle e delphi method: Una proposta metodologica per valutare scenari di progetto. Valori Valutazioni 23, 107–117 (2019)

    Google Scholar 

  33. Podvezko, V.: The comparative analysis of MCDA methods SAW and COPRAS. Eng. Econ. 22(2), 134–146 (2011)

    Article  Google Scholar 

  34. Ferreira, F.A., Santos, S.P.: Comparing trade-off adjustments in credit risk analysis of mortgage loans using AHP, Delphi and MACBETH. Int. J. Strateg. Prop. Manag. 20(1), 44–63 (2016)

    Article  Google Scholar 

  35. Attardi, R., Cerreta, M., Sannicandro, V., Torre, C.M.: Non-compensatory composite indicators for the evaluation of urban planning policy: the land-use policy efficiency index (LUPEI). Eur. J. Oper. Res. 264(2), 491–507 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhou, P., Ang, B.W., Poh, K.L.: A mathematical programming approach to constructing composite indicators. Ecol. Econ. 62(2), 291–297 (2007)

    Article  Google Scholar 

  37. Morano, P., Tajani, F., Anelli, D.: Urban planning decisions: an evaluation support model for natural soil surface saving policies and the enhancement of properties in disuse. Property Manag. 38(5), 699–723 (2020). https://doi.org/10.1108/PM-04-2020-0025

    Article  Google Scholar 

  38. Nesticò, A., Endreny, T., Guarini, M., Sica, F., Anelli, D.: Real Estate Values, Tree Cover, and Per-Capita Income: An Evaluation of the Interdependencies in Buffalo City (NY). In: Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Ana, M.A., Rocha, C., Tarantino, E., Torre, C.M., Karaca, Y. (eds.) Computational Science and Its Applications – ICCSA 2020: 20th International Conference, Cagliari, Italy, July 1–4, 2020, Proceedings, Part III, pp. 913–926. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58808-3_65

    Chapter  Google Scholar 

  39. Morano, P., Tajani, F.: Break Even Analysis for the financial verification of urban regeneration projects. Appl. Mech. Mater. 438–439, 1830–1835 (2013). https://doi.org/10.4028/www.scientific.net/AMM.438-439.1830

    Article  Google Scholar 

  40. D’Amico, G., Taddeo, R., Shi, L., Yigitcanlar, T., Ioppolo, G.: Ecological indicators of smart urban metabolism: a review of the literature on international standards. Ecol. Indic. 118, 106808 (2020)

    Article  Google Scholar 

  41. ISO 37120_2019: Sustainable Cities and Communities — Indicators for City Services and Quality of Life

    Google Scholar 

  42. Purnomo, F., Prabowo, H.: Smart city indicators: a systematic literature review. J. Telecommun. Electron. Comput. Eng. 8(3), 161–164 (2016)

    Google Scholar 

  43. Yu, W., Xu, C.: Developing smart cities in China: an empirical analysis. Int. J. Public Admin. Digital Age 5(3), 76–91 (2018)

    Google Scholar 

  44. Shi, Y., et al.: An integrated indicator system and evaluation model for regional sustainable development. Sustainability 11(7), 2183 (2019)

    Article  Google Scholar 

  45. Moghadam, S., Genta, C., Pignatelli, M., Lombardi, P.: Supporting sustainable urban planning process based on scenarios development. IOP Conf. Ser.: Earth Environ. Sci. 588, 042022 (2020). https://doi.org/10.1088/1755-1315/588/4/042022

    Article  Google Scholar 

  46. Satyro, W.C., Sacomano, J.B., Contador, J.C., Almeida, C.M., Giannetti, B.F.: Process of strategy formulation for sustainable environmental development: basic model. J. Clean. Prod. 166, 1295–1304 (2017)

    Article  Google Scholar 

  47. Andrews, S.S., Carroll, C.R.: Designing a soil quality assessment tool for sustainable agroecosystem management. Ecol. Appl. 11(6), 1573–1585 (2001)

    Article  Google Scholar 

  48. Pérez, V., et al.: Measuring the sustainability of Cuban tourism destinations considering stakeholders’ perceptions. Int. J. Tour. Res. 19(3), 318–328 (2017). https://doi.org/10.1002/jtr.2114

    Article  Google Scholar 

  49. Blancas, F.J., Caballero, R., González, M., Lozano-Oyola, M., Pérez, F.: Goal programming synthetic indicators: an application for sustainable tourism in Andalusian coastal counties. Ecol. Econ. 69(11), 2158–2172 (2010)

    Article  Google Scholar 

  50. Bernini, C., Guizzardi, A., Angelini, G.: DEA-like model and common weights approach for the construction of a subjective community well-being indicator. Soc. Indic. Res. 114(2), 405–424 (2013)

    Article  Google Scholar 

  51. Salvati, L., Carlucci, M.: A composite index of sustainable development at the local scale: Italy as a case study. Ecol. Indic. 43, 162–171 (2014)

    Article  Google Scholar 

  52. Melyn, W., Moesen, W.: Towards a synthetic indicator of macroeconomic performance: unequal weighting when limited information is available. Public Econ. Res. Pap. 1–24 (1991)

    Google Scholar 

  53. Shwartz, M., Burgess, J.F., Berlowitz, D.: Benefit-of-the-doubt approaches for calculating a composite measure of quality. Health Serv. Outcomes Res. Method 9(4), 234–251 (2009)

    Article  Google Scholar 

  54. Despotis, D.K.: A reassessment of the human development index via data envelopment analysis. J. Oper. Res. Soc. 56(8), 969–980 (2005)

    Article  Google Scholar 

  55. Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T.: An introduction to ‘benefit of the doubt’ composite indicators. Soc. Indic. Res. 82(1), 111–145 (2007)

    Article  Google Scholar 

  56. Savić, G., Martić, M.: Composite indicators construction by data envelopment analysis: Methodological background. In: Jeremic, V., Radojicic, Z., Dobrota, M. (eds.) Emerging Trends in the Development and Application of Composite Indicators, pp. 98–126. IGI Global (2017). https://doi.org/10.4018/978-1-5225-0714-7.ch005

    Chapter  Google Scholar 

  57. Puyenbroeck, T.: On the output orientation of the benefit-of-the-doubt-model. Soc. Indic. Res. 139(2), 415–431 (2017). https://doi.org/10.1007/s11205-017-1734-x

    Article  Google Scholar 

  58. Guijarro, F., Poyatos, J.A.: Designing a sustainable development goal index through a goal programming model: the case of EU-28 countries. Sustainability 10(9), 3167 (2018)

    Article  Google Scholar 

  59. Morano, P., Tajani, F.: The transfer of development rights for the regeneration of brownfield sites. Appl. Mech. Mater. 409–410, 971–978 (2013). https://doi.org/10.4028/www.scientific.net/AMM.409-410.971

    Article  Google Scholar 

  60. Nesticò, A., Guarini, M.R., Morano, P., Sica, F.: An economic analysis algorithm for urban forestry projects. Sustainability 11(2), 314 (2019). https://doi.org/10.3390/su11020314

    Article  Google Scholar 

  61. Guarini, M.R., Morano, P., Sica, F.: Integrated ecosystem design: an evaluation model to support the choice of eco-compatible technological solutions for residential building. Energies 12(14), 2659 (2019). https://doi.org/10.3390/en12142659

    Article  Google Scholar 

  62. Caballero, R., Gómez, T., Ruiz, F.: Goal programming: realistic targets for the near future. J. Multi-Criteria Decis. Anal. 16(3–4), 79–110 (2009)

    Article  Google Scholar 

  63. Burkhard, B., Kroll, F., Müller, F., Windhorst, W.: Landscapes’ capacities to provide ecosystem services—a concept for land-cover based assessments. Landsc. Online 15, 1–22 (2009)

    Article  Google Scholar 

  64. Cherchye, L., Kuosmanen, T.: Benchmarking sustainable development: a synthetic meta-index approach (No. 2004/28). WIDER Research Paper (2004)

    Google Scholar 

  65. Sutton, P.C., Costanza, R.: Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 41(3), 509–527 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Guarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morano, P., Guarini, M.R., Sica, F., Anelli, D. (2021). Ecosystem Services and Land Take. A Composite Indicator for the Assessment of Sustainable Urban Projects. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12954. Springer, Cham. https://doi.org/10.1007/978-3-030-86979-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86979-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86978-6

  • Online ISBN: 978-3-030-86979-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics