Skip to main content

Early Fault Detection with Multi-target Neural Networks

  • Conference paper
  • First Online:
Book cover Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12951))

Included in the following conference series:

Abstract

Wind power is seeing a strong growth around the world. At the same time, shrinking profit margins in the energy markets let wind farm managers explore options for cost reductions in the turbine operation and maintenance. Sensor-based condition monitoring facilitates remote diagnostics of turbine subsystems, enabling faster responses when unforeseen maintenance is required. Condition monitoring with data from the turbines’ supervisory control and data acquisition (SCADA) systems was proposed and SCADA-based fault detection and diagnosis approaches introduced based on single-task normal operation models of turbine state variables. As the number of SCADA channels has grown strongly, thousands of independent single-target models are in place today for monitoring a single turbine. Multi-target learning was recently proposed to limit the number of models. This study applied multi-target neural networks to the task of early fault detection in drive-train components. The accuracy and delay of detecting gear bearing faults were compared to state-of-the-art single-target approaches. We found that multi-target multi-layer perceptrons (MLPs) detected faults at least as early and in many cases earlier than single-target MLPs. The multi-target MLPs could detect faults up to several days earlier than the single-target models. This can deliver a significant advantage in the planning and performance of maintenance work. At the same time, the multi-target MLPs achieved the same level of prediction stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global Wind Energy Council GWEC: Global Wind Report 2019 (2019). https://gwec.net/global-wind-report-2019. Accessed 5 June 2021

  2. International Renewable Energy Agency: Renewable power generation costs in 2019 (2019). https://www.irena.org. Accessed 5 June 2021

  3. Faulstich, S., Hahn, B., Tavner, P.: Wind turbine downtime and its importance for offshore deployment (2011). https://doi.org/10.1002/we.421

  4. Pfaffel, S., Faulstich, S., Rohrig, K.: Performance and reliability of wind turbines: a review. Energies (2017). https://doi.org/10.3390/en10111904

    Article  Google Scholar 

  5. Garcia Marquez, F., Tobias, A., Pinar Perez, J., Papaelias, M.: Condition monitoring of wind turbines: techniques and methods. Renew. Energy 46, 169–178 (2012). https://doi.org/10.1016/j.renene.2012.03.003

    Article  Google Scholar 

  6. Fischer, K., Coronado, D.: Condition monitoring of wind turbines: state of the art, user experience and recommendations. VGB PowerTech 7, 51–56 (2015)

    Google Scholar 

  7. Stetco, A., et al.: Machine learning methods for wind turbine condition monitoring: a review. Renew. Energy 133, 620–635 (2019). https://doi.org/10.1016/j.renene.2018.10.047

    Article  Google Scholar 

  8. Tautz-Weinert, J., Watson, S.: Using SCADA data for wind turbine condition monitoring - a review. IET Renew. Pow. Gener. 11(4), 382–394 (2017). https://doi.org/10.1049/iet-rpg.2016.0248

    Article  Google Scholar 

  9. Helbing, G., Ritter, M.: Deep learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 98, 189–198 (2018). https://doi.org/10.1016/j.rser.2018.09.012

    Article  Google Scholar 

  10. Qiao, W., Lu, D.: A survey on wind turbine condition monitoring and fault diagnosis—part II: signals and signal processing methods. IEEE Trans. Industr. Electron. 62, 6546–6557 (2015). https://doi.org/10.1109/TIE.2015.2422394

    Article  Google Scholar 

  11. Zaher, A., McArthur, S., Infield, D., Patel, Y.: Online wind turbine fault detection through automated SCADA data analysis. Wind Energy 12, 574–593 (2009). https://doi.org/10.1002/we.319

    Article  Google Scholar 

  12. Kusiak, A., Verma, A.: Analyzing bearing faults in wind turbines: a data-mining approach. Renew. Energy 48, 110–116 (2012). https://doi.org/10.1016/j.renene.2012.04.020

    Article  Google Scholar 

  13. Salameh, J., Cauet, S., Etien, E., Sakout, A., Rambault, L.: Gearbox condition monitoring in wind turbines: a review. Mech. Syst. Sig. Process. 111, 251–264 (2018). https://doi.org/10.1016/j.ymssp.2018.03.052

    Article  Google Scholar 

  14. McKinnon, C., Turnbull, A., Koukoura, S., Carroll, J., McDonald, A.: Effect of time history on normal behaviour modelling using SCADA data to predict wind turbine failures. Energies (2020). https://doi.org/10.3390/en13184745

    Article  Google Scholar 

  15. Meyer, A., Brodbeck, B.: Data-driven performance fault detection in commercial wind turbines. In: Proceedings of the 5th European Conference of the Prognostics and Health Management Society (PHME20) (2020). ISBN 978-1-93-626332-5

    Google Scholar 

  16. Liu, Y., Wu, Z., Wang, X.: Research on fault diagnosis of wind turbine based on SCADA data. IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.3029435

    Article  Google Scholar 

  17. Zhang, S., Lang, Z.: SCADA-data-based wind turbine fault detection: a dynamic model sensor method. Control. Eng. Pract. (2020). https://doi.org/10.1016/j.conengprac.2020.104546

    Article  Google Scholar 

  18. Liu, X., Du, J., Ye, Z.: A condition monitoring and fault isolation system for wind turbine based on SCADA data. IEEE Trans. Industr. Inf. (2021). https://doi.org/10.1109/TII.2021.3075239

    Article  Google Scholar 

  19. Yang, Y., Liu, A., Wang, J.: Fault early warning of wind turbine gearbox based on multi-input support vector regression and improved ant lion optimization. Wind Energy (2021). https://doi.org/10.1002/we.2604

    Article  Google Scholar 

  20. Astolfi, D., Scappaticci, L., Terzi, L.: Fault diagnosis of wind turbine gearboxes through temperature and vibration data. Int. J. Renew. Energy Res. (2017)

    Google Scholar 

  21. Leahy, K., Hu, R., O’Sullivan, D.: Diagnosing and predicting wind turbine faults from SCADA data using support vector machines. Int. J. Prognost. Health Manag. (2018)

    Google Scholar 

  22. Zeng, X., Yang, M., Bo, Y.: Gearbox oil temperature anomaly detection for wind turbine based on sparse Bayesian probability estimation. Int. J. Electr. Pow. Energy Syst. (2020)

    Google Scholar 

  23. Wang, Y., Infield, D.: Supervisory control and data acquisition data-based non-linear state estimation technique for wind turbine gearbox condition monitoring. IET Renew. Pow. Gener. 7, 350–358 (2013). https://doi.org/10.1049/iet-rpg.2012.0215

    Article  Google Scholar 

  24. Wang, L., Zhang, Z., Long, H., Xu, J., Liu, R.: Wind turbine gearbox failure identification with deep neural networks. IEEE Trans. Industr. Inf. 13, 1360–1368 (2017). https://doi.org/10.1109/TII.2016.2607179

    Article  Google Scholar 

  25. Guo, P., Infield, D.: Wind turbine generator condition monitoring using temperature trend analysis (2012). https://doi.org/10.1109/TSTE.2011.2163430

  26. Kusiak, A., Zheng, H., Song, Z.: Online monitoring of power curves. Renew. Energy 34, 1487–1493 (2009). https://doi.org/10.1016/j.renene.2008.10.022

    Article  Google Scholar 

  27. Schlechtingen, M., Santos, F., Achiche, S.: Using data-mining approaches for wind turbine power curve monitoring: a comparative study. IEEE Trans. Sustain. Energy 4, 671–679 (2013). https://doi.org/10.1109/TSTE.2013.2241797

    Article  Google Scholar 

  28. Caruana, R.: Multitask learning. Mach. Learn. 28, 41–75 (1997). https://doi.org/10.1023/A:1007379606734

    Article  Google Scholar 

  29. Piccart, B.: Algorithms for multi-target learning. Doctoral thesis, KU Leuven (2012)

    Google Scholar 

  30. Borchani, H., Varando, G., Bielza, C., Larranaga, P.: A survey on multi-output regression. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. (2015). https://doi.org/10.1002/widm.1157

  31. Waegeman, W., Dembczyński, K., Hüllermeier, E.: Multi-target prediction: a unifying view on problems and methods. Data Min. Knowl. Disc. 33(2), 293–324 (2018). https://doi.org/10.1007/s10618-018-0595-5

    Article  MathSciNet  MATH  Google Scholar 

  32. Xu, D., Shi, Y., Tsang, I., Ong, Y., Gong, C., Shen, X.: Survey on multi-output learning. IEEE Trans. Neural Netw. Learn. Syst. 31, 2409–2429 (2020). https://doi.org/10.1109/TNNLS.2019.2945133

    Article  MathSciNet  Google Scholar 

  33. Kocev, D., Dzeroski, S., White, M., Newell, G., Griffioen, P.: Using single- and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol. Model. 220(8), 1159–1168 (2009)

    Article  Google Scholar 

  34. Segal, M., Xiao, Y.: Multivariate random forests. Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. (2011). https://doi.org/10.1002/widm.12

  35. Maron, J., Anagnostos, D., Brodbeck, B., Meyer, A.: Gear bearing fault detection using multi-target neural networks. In: Wind Energy Science Conference WESC 2021. Hanover, Germany, May 2021

    Google Scholar 

Download references

Acknowledgments

The author thanks Bernhard Brodbeck, Janine Maron, Dimitrios Anagnostos of WinJi AG, Switzerland, and Kaan Duran of Energie Baden-Wuerttemberg EnBW, Germany, for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, A. (2021). Early Fault Detection with Multi-target Neural Networks. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12951. Springer, Cham. https://doi.org/10.1007/978-3-030-86970-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86970-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86969-4

  • Online ISBN: 978-3-030-86970-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics