Skip to main content

Identifying Anomaly Detection Patterns from Log Files: A Dynamic Approach

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2021 (ICCSA 2021)

Abstract

Context: Services that run in a data center can be configured to store information about their behaviour in specific logs. They contain huge amount of data that makes difficult to manually understand run-time properties of services. Therefore, to facilitate their analysis it is important to use dynamic solutions to quickly parse log files, detect anomaly and diagnose problems in order to react promptly.

Objectives: We want to build a model for determining anomaly detection in a certain period of time. Furthermore, we wish to identify machine learning techniques that support us determining problems patterns according to the messages available in logs.

Method: We have selected machine learning techniques, such as Invariant Mining model, natural language process and autoencoder, able to work with messages and identify anomaly patterns. According to the data available we have decided to study monthly data and detect samples with a higher frequency of problems. We have scanned the various logs to search the services with a wrong behaviour in the same period of time to recognize past anomalies in the data center and code these behaviours.

Results: The results are promising. We have obtained an average of F-measure metric over 86%.

Conclusion: Our model aims at quickly recognizing problems and solving them. It helps site administrators to better understand the run services, code anomalies and crosscheck different messages in the same time slot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertero, C., Roy, M., Sauvanaud, C., Trédan, G.: Experience report: log mining using natural language processing and application to anomaly detection. In: 28th International Symposium on Software Reliability Engineering (ISSRE 2017). p. 10p. Toulouse, France (October 2017). https://hal.laas.fr/hal-01576291

  2. Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., Benini, L.: Anomaly detection using autoencoders in high performance computing systems. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9428–9433 (July 2019). https://doi.org/10.1609/aaai.v33i01.33019428

  3. Kim, K.J. (ed.): Information Science and Applications. LNEE, vol. 339. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46578-3

    Book  Google Scholar 

  4. Breskin, R.V.A.: The CERN Large Hadron Collider: Accelerator And Experiments, vol. 2, CMS, LHCb, LHCf, And Totem. CERN (2009)

    Google Scholar 

  5. Cavallaro, C., Vitrià, J.: Corridor detection from large GPS trajectories datasets. Appl. Sci. 10(14), 5003 (July 2020) https://doi.org/10.3390/app10145003

  6. Chen, B., Jiang, Z.M.J.: Characterizing and detecting anti-patterns in the logging code. In: Proceedings of the IEEE/ACM 39th International Conference on Software Engineering (ICSE), pp. 71–81. IEEE Press (2017). https://doi.org/10.1109/ICSE.2017.15

  7. Chen, Y., et al.: Outage prediction and diagnosis for cloud service systems. In: The World Wide Web Conference on - WWW 2019, ACM Press (2019). https://doi.org/10.1145/3308558.3313501

  8. Collaboration, T.C., Chatrchyan, S., Hmayakyan, G., Khachatryan, V., Sirunyan, A.M., et al.: The CMS experiment at the CERN LHC. J. Instrum. 3(08), S08004–S08004 (2008) https://doi.org/10.1088/1748-0221/3/08/s08004

  9. Dai, H., Li, H., Chen, C.S., Shang, W., Chen, T.H.: Logram: efficient log parsing using n-gram dictionaries. IEEE Trans. Softw. Eng. 1 (2020). https://doi.org/10.1109/tse.2020.3007554

  10. Das, A., Mueller, F., Rountree, B.: Aarohi: making real-time node failure prediction feasible. In: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), IEEE (May 2020) https://doi.org/10.1109/ipdps47924.2020.00115

  11. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979). https://doi.org/10.1109/tpami.1979.4766909

  12. dell’Agnello, L., et al.: Infn tier–1: a distributed site. EPJ Web Conf. 214(08002), 01 (2019). https://doi.org/10.1051/epjconf/201921408002

    Article  Google Scholar 

  13. Domingos, P., Pazzani, M.: On the optimality of the simple bayesian classifier under zero-one loss. Mach. Learn. 29(2/3), 103–130 (1997). https://doi.org/10.1023/a:1007413511361

    Article  MATH  Google Scholar 

  14. Du, M., Li, F.: Spell: Streaming parsing of system event logs. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), IEEE (December 2016) https://doi.org/10.1109/icdm.2016.0103

  15. Du, M., Li, F., Zheng, G., Srikumar, V.: DeepLog : anomaly detection and diagnosis from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, ACM (October 2017) https://doi.org/10.1145/3133956.3134015

  16. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974). https://doi.org/10.1080/01969727408546059

  17. El-Masri, D., Petrillo, F., Guéhéneuc, Y.G., Hamou-Lhadj, A., Bouziane, A.: A systematic literature review on automated log abstraction techniques. Inf. Softw. Technol. 122, 106276 (2020) https://doi.org/10.1016/j.infsof.2020.106276

  18. ELK: Elasticsearch. https://www.elastic.co/elk-stack (2021). Accessed 11 Jun 2021

  19. Examon: Examon HPC Monitoring. https://github.com/EEESlab/examon (2021). Accessed 11 Jun 2021

  20. Farshchi, M., Schneider, J.G., Weber, I., Grundy, J.: Experience report: anomaly detection of cloud application operations using log and cloud metric correlation analysis. IEEE Trans. Softw. Eng. (2015). https://doi.org/10.1109/ISSRE.2015.7381796

    Article  Google Scholar 

  21. Gainaru, A., Cappello, F., Trausan-Matu, S., Kramer, B.: event log mining tool for large scale HPC systems. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 52–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23400-2_6

    Chapter  Google Scholar 

  22. Gerhards, R.: The syslog protocol. In: RFC. RFC Editor (2009)

    Google Scholar 

  23. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. ACM SIGMOD Record 29(2), 1–12 (2000). https://doi.org/10.1145/335191.335372

    Article  Google Scholar 

  24. He, P., Chen, Z., He, S., Lyu, M.R.: Characterizing the natural language descriptions in software logging statements. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering ASE, pp. 178–189 (2018). https://doi.org/10.1145/3238147.3238193

  25. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931–944 (2018). https://doi.org/10.1109/tdsc.2017.2762673

    Article  Google Scholar 

  26. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: An online log parsing approach with fixed depth tree. In: 2017 IEEE International Conference on Web Services (ICWS), IEEE (2017) https://doi.org/10.1109/icws.2017.13

  27. He, S., He, P., Chen, Z., Yang, T., Su, Y., Lyu, M.R.: A survey on automated log analysis for reliability engineering. ArXiv (September 2020)

    Google Scholar 

  28. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x

    Article  Google Scholar 

  29. Jia, T., Yang, L., Chen, P., Li, Y., Meng, F., Xu, J.: LogSed: anomaly diagnosis through mining time-weighted control flow graph in logs. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), IEEE (2017). https://doi.org/10.1109/cloud.2017.64

  30. Tan, J., Pan, X., Kavulya, S., Gandhi, R., Narasimhan, P.: Salsa: analyzing logs as state machines (cmu-pdl-08-111). In: First USENIX Workshop on the Analysis of System Logs, WASL 2008, San Diego, CA, USA, Proceedings. Carnegie Mellon University (2008). https://doi.org/10.1184/R1/6619766

  31. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representation (ICLR) (2015)

    Google Scholar 

  32. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982). https://doi.org/10.1007/bf00337288

    Article  MathSciNet  MATH  Google Scholar 

  33. Layer, L., et al.: Automatic log analysis with NLP for the CMS workflow handling. In: 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), p. 7 (November 2020) https://doi.org/10.1051/epjconf/202024503006

  34. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

    MathSciNet  MATH  Google Scholar 

  35. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982). https://doi.org/10.1109/tit.1982.1056489

    Article  MathSciNet  MATH  Google Scholar 

  36. Loggly: Loggly - log management by loggly. https://www.loggly.com (2021). Accessed 11 Jun 2021

  37. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for system problem detection. In: Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, USENIXATC 2010, p. 24, USENIX Association, USA (2010)

    Google Scholar 

  38. Makanju, A., Zincir-Heywood, A.N., Milios, E.E.: A lightweight algorithm for message type extraction in system application logs. IEEE Trans. Knowl. Data Eng. 24(11), 1921–1936 (2012). https://doi.org/10.1109/tkde.2011.138

    Article  Google Scholar 

  39. Mizutani, M.: Incremental mining of system log format. In: 2013 IEEE International Conference on Services Computing, IEEE (June 2013) https://doi.org/10.1109/scc.2013.73

  40. Oliver, R.: What supercomputers say: a study of 5 system logs. In: Proceedings of the 37th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2007), IEEE Press (2007). https://doi.org/10.1109/DSN.2007.103

  41. OverOps: OverOps Continuous Reliability Solution. https://www.overops.com/ (2021). Accessed 11 Jun 2021

  42. Quinlan, J.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987). https://doi.org/10.1016/s0020-7373(87)80053-6

    Article  Google Scholar 

  43. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971). https://doi.org/10.1080/01621459.1971.10482356

    Article  Google Scholar 

  44. Sander, J., Ester, M., Kriegel, H.P., Xu, X.: Density-based clustering in spatial databases: The algorithm dbscan and its applications. Data Min. Knowl. Discov. 2(2), 169–194 (1998). https://doi.org/10.1023/a:1009745219419

    Article  Google Scholar 

  45. Splunk: Splunk platform. http://www.splunk.com (2005-2021). Accessed 11 Jun 2021

  46. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Gener. Comput. Syst. 13(2–3), 161–180 (1997). https://doi.org/10.1016/s0167-739x(97)00019-8

    Article  Google Scholar 

  47. Tomas, M., Ilya, S., Kai, C., Greg, C., Jeffrey, D.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS 2013), NIPS 2013, pp. 3111–3119. Curran Associates Inc., Red Hook, NY, USA (2013)

    Google Scholar 

  48. Ullman, J.D., Aho, A.V., Hirschberg, D.S.: Bounds on the complexity of the longest common subsequence problem. J. ACM 23(1), 1–12 (1976). https://doi.org/10.1145/321921.321922

    Article  MathSciNet  MATH  Google Scholar 

  49. Vaarandi, R.: Mining event logs with SLCT and LogHound. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium, IEEE (2008). https://doi.org/10.1109/noms.2008.4575281

  50. Vaarandi, R., Pihelgas, M.: LogCluster - a data clustering and pattern mining algorithm for event logs. In: 2015 11th International Conference on Network and Service Management (CNSM), IEEE (November 2015) https://doi.org/10.1109/cnsm.2015.7367331

  51. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  52. Xia, B., Bai, Y., Yin, J., Li, Y., Xu, J.: LogGAN: a log-level generative adversarial network for anomaly detection using permutation event modeling. Inf. Syst. Front. 23(2), 285–298 (2020). https://doi.org/10.1007/s10796-020-10026-3

    Article  Google Scholar 

  53. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale system problems by mining console logs. In: Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles - SOSP 2009. ACM Press (2009). https://doi.org/10.1145/1629575.1629587

  54. Yuan, D., Mai, H., Xiong, W., Tan, L., Zhou, Y., Pasupathy, S.: SherLog: error diagnosis by connecting clues from run-time logs. ACM SIGARCH Comput. Architect. News 38(1), 143–154 (2010). https://doi.org/10.1145/1735970.1736038

    Article  Google Scholar 

  55. Yuan, D., Zheng, J., Park, S., Zhou, Y., Savage, S.: Improving software diagnosability via log enhancement. In: Proceedings of the Sixteenth International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS 2011. ACM Press (2011). https://doi.org/10.1145/1950365.1950369

  56. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. ArXiv arXiv:1811.08055 (2019)

Download references

Acknowledgements

This work has been supported by the IoTwins project N. 857191.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Ronchieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cavallaro, C., Ronchieri, E. (2021). Identifying Anomaly Detection Patterns from Log Files: A Dynamic Approach. In: Gervasi, O., et al. Computational Science and Its Applications – ICCSA 2021. ICCSA 2021. Lecture Notes in Computer Science(), vol 12950. Springer, Cham. https://doi.org/10.1007/978-3-030-86960-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86960-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86959-5

  • Online ISBN: 978-3-030-86960-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics