Skip to main content

Revisiting Fast and Slow Thinking in Case-Based Reasoning

  • 745 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 12877)

Abstract

A dichotomous Case-Based Reasoning (CBR) model is one in which two kinds of reasoning mechanisms are employed; these may be for realizing fast and slow problem-solving as demanded by the nature of the incoming query. Such dichotomous operation is inspired by Daniel Kahneman’s seminal work on the two modes of thinking observed in humans. In this paper, we present the following three directions of refinement for a dichotomous CBR model: selection of attributes for a fast thinking model based on parsimonious CBR, switching from fast to slow thinking based on constraints derived from domain knowledge and arriving at a complexity measure for evaluating dichotomous models. For all the three improvements identified, we discuss the results on real-world data sets and empirically analyse the effectiveness of the same.

Keywords

  • Fast and slow thinking
  • Dichotomous CBR models
  • Cognitive CBR

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86957-1_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-86957-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Fig. 1.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning and the upswing of AI (2017)

    Google Scholar 

  2. Ayres-de Campos, D., Bernardes, J., Garrido, A., Marques-de Sa, J., Pereira-Leite, L.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Matern. Fetal Neonatal. Med. 9(5), 311–318 (2000)

    Google Scholar 

  3. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    CrossRef  Google Scholar 

  4. Craw, S., Aamodt, A.: Case based reasoning as a model for cognitive artificial intelligence. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 62–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01081-2_5

    CrossRef  Google Scholar 

  5. Dileep, K.V.S., Chakraborti, S.: Eager to be lazy: towards a complexity-guided textual case-based reasoning system. In: Goel, A., Díaz-Agudo, M.B., Roth-Berghofer, T. (eds.) ICCBR 2016. LNCS (LNAI), vol. 9969, pp. 77–92. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47096-2_6

    CrossRef  Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  7. Fox, S., Leake, D.: Using introspective reasoning to re ne indexing. In: IJCAI, vol. 391397 (1995)

    Google Scholar 

  8. Ganesan, D., Chakraborti, S.: An empirical study of knowledge tradeoffs in case-based reasoning. In: IJCAI, pp. 1817–1823 (2018)

    Google Scholar 

  9. Ganesan, D., Chakraborti, S.: A reachability-based complexity measure for case-based reasoners. In: The Thirty-Second International Flairs Conference (2019)

    Google Scholar 

  10. Kahneman, D.: Thinking, Fast and Slow. Macmillan (2011)

    Google Scholar 

  11. Kannengiesser, U., Gero, J.S.: Design thinking, fast and slow: a framework for Kahneman’s dual-system theory in design. Design Sci. 5, 1–21 (2019)

    CrossRef  Google Scholar 

  12. Kaurav, S., Ganesan, D., Padmanabhan, D., Chakraborti, S.: Thinking fast and slow: a CBR perspective. In: 34th Florida Artificial Intelligence Research Society Conference (2021)

    Google Scholar 

  13. Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann, Burlington (2014)

    Google Scholar 

  14. Raghunandan, M.A., Chakraborti, S., Khemani, D.: Robust measures of complexity in TCBR. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS (LNAI), vol. 5650, pp. 270–284. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02998-1_20

    CrossRef  Google Scholar 

  15. Smith, J.W., Everhart, J., Dickson, W., Knowler, W., Johannes, R.: Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. In: Proceedings of the ASCA in Medical Care, p. 261 (1988)

    Google Scholar 

  16. Smyt, B., McKenna, E.: Footprint-based retrieval. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS, vol. 1650, pp. 343–357. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48508-2_25

    CrossRef  Google Scholar 

  17. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI Mag. 17(3), 73 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srashti Kaurav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kaurav, S., Ganesan, D., P, D., Chakraborti, S. (2021). Revisiting Fast and Slow Thinking in Case-Based Reasoning. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds) Case-Based Reasoning Research and Development. ICCBR 2021. Lecture Notes in Computer Science(), vol 12877. Springer, Cham. https://doi.org/10.1007/978-3-030-86957-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86957-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86956-4

  • Online ISBN: 978-3-030-86957-1

  • eBook Packages: Computer ScienceComputer Science (R0)