Abstract
When interacting with a human user, an artificial intelligence needs to have a clear model of the human’s behaviour to make the correct decisions, be it recommending items, helping the user in a task or teaching a language. In this paper, we explore the feasibility of modelling the human as a case-based reasoning agent through the question of how to infer the state of a CBR agent from interaction data. We identify the main parameters to be inferred, and propose a Bayesian belief update as a possible way to infer both the parameters of the agent and the content of their case base. We illustrate our ideas with the simple application of an agent learning grammar rules throughout a sequence of observations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
www.kotus.fi. The link to the list of Finnish words: kaino.kotus.fi/sanat/nykysuomi.
- 2.
References
Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science 228(4698), 456–462 (1985)
Broz, F., Nourbakhsh, I.R., Simmons, R.G.: Planning for human-robot interaction using time-state aggregated POMDPs. In: AAAI, vol. 8, pp. 1339–1344 (2008)
Celikok, M.M., Murena, P.A., Kaski, S.: Teaching to learn: sequential teaching of agents with inner states. arXiv preprint arXiv:2009.06227 (2020)
Chakraborti, T., Kambhampati, S., Scheutz, M., Zhang, Y.: AI challenges in human-robot cognitive teaming. arXiv abs/1707.04775 (2017)
Dafoe, A., Bachrach, Y., Hadfield, G., Horvitz, E., Larson, K., Graepel, T.: Cooperative AI: machines must learn to find common ground. Nature (593) 33–36 (2021)
Elsom-Cook, M.: Student modelling in intelligent tutoring systems. Artif. Intell. Rev. 7(3–4), 227–240 (1993)
Kolodner, J.L., Cox, M.T., González-Calero, P.A.: Case-based reasoning-inspired approaches to education. Knowl. Eng. Rev. 20(3), 299–304 (2005)
Li, M., Vitányi, P., et al.: An Introduction to Kolmogorov Complexity and its Applications, vol. 3. Springer, Heidelberg (2008)
Marling, C., Whitehouse, P.: Case-based reasoning in the care of Alzheimer’s disease patients. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 702–715. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44593-5_50
Murena, P.A., Al-Ghossein, M., Dessalles, J.L., Cornuéjols, A.: Solving analogies on words based on minimal complexity transformations. In: International Joint Conference on Artificial Intelligence, IJCAI (2020)
Nioche, A., Murena, P.A., de la Torre-Ortiz, C., Oulasvirta, A.: Improving artificial teachers by considering how people learn and forget. arXiv preprint arXiv:2102.04174 (2021)
Rafferty, A.N., Brunskill, E., Griffiths, T.L., Shafto, P.: Faster teaching via POMDP planning. Cogn. Sci. 40(6), 1290–1332 (2016)
Richter, M.M.: Similarity. In: Perner, P. (ed.) Case-Based Reasoning on Images and Signals, pp. 25–90. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73180-1_2
Richter, M.M., Michael, M.: Knowledge Containers. Readings in Case-Based Reasoning. Morgan Kaufmann Publishers (2003)
Smyth, B., Keane, M.T.: Using adaptation knowledge to retrieve and adapt design cases. Knowl.-Based Syst. 9(2), 127–135 (1996)
Sottilare, R.A., Graesser, A., Hu, X., Holden, H.: Design Recommendations for Intelligent Tutoring Systems: Volume 1-Learner Modeling, vol. 1. US Army Research Laboratory (2013)
Stahl, A.: Learning similarity measures: a formal view based on a generalized CBR model. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 507–521. Springer, Heidelberg (2005). https://doi.org/10.1007/11536406_39
Tabrez, A., Luebbers, M.B., Hayes, B.: A survey of mental modeling techniques in human-robot teaming. Curr. Robot. Rep. 1–9 (2020)
Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-learning. Morgan Kaufmann (2010)
Young, S., Gašić, M., Thomson, B., Williams, J.D.: POMDP-based statistical spoken dialog systems: a review. Proc. IEEE 101(5), 1160–1179 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Murena, PA., Al-Ghossein, M. (2021). Inferring Case-Based Reasoners’ Knowledge to Enhance Interactivity. In: Sánchez-Ruiz, A.A., Floyd, M.W. (eds) Case-Based Reasoning Research and Development. ICCBR 2021. Lecture Notes in Computer Science(), vol 12877. Springer, Cham. https://doi.org/10.1007/978-3-030-86957-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-86957-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86956-4
Online ISBN: 978-3-030-86957-1
eBook Packages: Computer ScienceComputer Science (R0)