Skip to main content

Combining Pencil/Paper Proofs and Formal Proofs, A Challenge for Artificial Intelligence and Mathematics Education

  • Chapter
  • First Online:
Mathematics Education in the Age of Artificial Intelligence

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 17))

Abstract

We compare the pencil/paper proofs and formal proof of two traditional proofs in high school geometry. We highlight the fact that slightly different formulations or proofs can lead to difficulties in the formalization. We discuss the challenges and impact on both mathematical teaching and on the design of AI tools for mathematical education.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A proof assistant is a piece of software which allows the user of the system to state mathematical definition and properties and to prove theorems interactively using a formal language. The proofs are checked mechanically.

  2. 2.

    The comment in French Wikipedia about Amiot’s proof seems to say that the proof is valid only in Euclidean geometry because it uses the construction of parallel line AC trough B. To be precise, the proof does not rely on the uniqueness of this line only on its existence, so this first step of the proof is valid also in hyperbolic geometry (but not in elliptic geometry). The Wikipedia comment fails to notice that essential use of a version of the parallel postulate relies in the use of what we called above the postulate of alternate-interior angles.

  3. 3.

    http://geocoq.github.io/GeoCoq/html/GeoCoq.Meta_theory.Parallel_postulates.alternate_interior_angles_triangle.html#.

  4. 4.

    We may add a definition of alternate-interior angles, which would be a shortcut for the predicate TS which states that two points are on opposite sides of a line, but adding more definitions make the formal proofs more cumbersome, that is why we hesitate to introduce a new definition.

  5. 5.

    Note that the reciprocal is valid in neutral geometry.

  6. 6.

    We have a separate lemma for this case, we could also assume that we have a proper triangle. In formal development, we always try to prove the most generic results.

  7. 7.

    Note that we do need “the parallel line”, uniqueness is not important here.

  8. 8.

    We could also use any point \(B_2\) such that B belongs to segment \(B_1B_2\).

  9. 9.

    Maybe there is a simpler proof ? but for sure we need to use the fact that AC is parallel to \(B_1B_2\).

  10. 10.

    Construction tools correspond to existence theorems.

  11. 11.

    The proof could also be modified to construct \(B_1\) and \(B_2\) such that B belongs to segment \(B_1B_2\) and then say that at least one of them is on the opposite side of A with regard to the line BC.

  12. 12.

    Excerpts from students’ productions are translated from French.

References

  • Arsac, G. (1998). L’axiomatique de Hilbert et l’enseignement de la géométrie au collège et au lycée. Lyon: Aléas.

    Google Scholar 

  • Avigad, J., Dean, E., & Mumma, J. (2009). A formal system for Euclid’s elements. The Review of Symbolic Logic, 2, 700–768.

    Article  Google Scholar 

  • Beeson, M., Narboux, J., & Wiedijk, F. (2019). Proof-checking Euclid. Annals of Mathematics and Artificial Intelligence, 85(2–4):213–257. Publisher: Springer.

    Google Scholar 

  • Boutry, P., Gries, C., Narboux, J., & Schreck, P. (2017). Parallel postulates and continuity axioms: A mechanized study in intuitionistic logic using Coq. Journal of Automated Reasoning 68.

    Google Scholar 

  • Boutry, P., Braun, G., & Narboux, J. (2019). Formalization of the arithmetization of Euclidean plane geometry and applications. Journal of Symbolic Computation, 98, 149–168.

    Article  Google Scholar 

  • Chou, S. -C., Gao, X. -S., & Zhang, J. -Z. (1994). Machine proofs in geometry. Singapore: World Scientific.

    Google Scholar 

  • Churchhouse, R. F., Cornu, B., Howson, A. G., Kahane, J. -P., van Lint, J. H., Pluvinage, F., Ralston, A., & Yamaguti, M.,(Eds.) (1986). The influence of computers and informatics on mathematics and its teaching: Proceedings from a symposium held in Strasbourg, France in March 1985 and sponsored by the international commission on mathematical instruction. Cambridge University Press, 1 edition.

    Google Scholar 

  • Descartes, R. (1925). La géométrie. Chicago: Open Court.

    Google Scholar 

  • Dowek, G. (2014). Deduction modulo theory. Wien, Austria: In All about proofs. Proofs for all.

    Google Scholar 

  • Durand-Guerrier, V., & Arsac, G. (2009). Analyze of mathematical proofs. Some questions and first answers. In F. -L. Lin, F. -J. Hsieh, G. Hanna & M. D. Villiers (Eds.), ICMI study 19 conference: Proof and proving in mathematics education (Vol. I, pp. 148–153). Taipei, Taiwan. The Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan.

    Google Scholar 

  • Durand-Guerrier, V., & Tanguay, D. (2018). Working on proof as contribution to conceptualisation—The case of R-completness. In A. J. Stylianides & G. Harel (Eds.), Advances in mathematics education research on proof and proving. An international perspective, ICME-13 Monographs (pp. 19–34). Springer International Publishing.

    Google Scholar 

  • Durand-Guerrier, V., Boero, P., Douek, N., Epp, S. S., & Tanguay, D. (2012). Examining the role of logic in teaching proof. In G. Hanna & M. D. Villiers (Eds.), Proof and proving in mathematics education, number 15 in New ICMI Study Series (pp. 369–389). Springer Netherlands.

    Google Scholar 

  • Durand-Guerrier, V., Meyer, A., & Modeste, S. (2019). Didactical issues at the interface of mathematics and computer science. In Proof technology in mathematics research and teaching. Springer.

    Google Scholar 

  • Durand-Guerrier, V. (2003). Which notion of implication is the right one? From logical considerations to a didactic perspective. Educational Studies in Mathematics, 53(1), 5–34.

    Article  Google Scholar 

  • Durand-Guerrier, V. (2008). Truth versus validity in mathematical proof. ZDM, 40(3), 373–384.

    Article  Google Scholar 

  • Genevaux, J. -D., Narboux, J., & Schreck, P. (2011). Formalization of Wu’s simple method in Coq. In J. -P. Jouannaud & Z. Shao (Eds.), CPP 2011 First International Conference on Certified Programs and Proofs, volume 7086 of Lecture Notes in Computer Science (pp. 71–86). Kenting, Taiwan: Springer.

    Google Scholar 

  • Gries, C., Boutry, P., & Narboux, J. (2016). Somme des angles d’un triangle et unicité de la parallèle: une preuve d’équivalence formalisée en Coq. In Les vingt-septièmes Journées Francophones des Langages Applicatifs (JFLA 2016), Actes des Vingt-septièmes Journées Francophones des Langages Applicatifs (JFLA 2016), page 15, Saint Malo, France. Jade Algave and Julien Signoles.

    Google Scholar 

  • Harrison, J. (2009). Without loss of generality. In TPHOLs, pp. 43–59.

    Google Scholar 

  • Hartshorne, R. (2000). Geometry: Euclid and beyond. Undergraduate texts in mathematics. Springer.

    Google Scholar 

  • Hilbert, D. (1960). Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle, Illinois. Second English edition, translated from the tenth German edition by Leo Unger. Original publication date, 1899.

    Google Scholar 

  • Janičić, P., Narboux, J., & Quaresma, P. (2012). The area method: A recapitulation. Journal of Automated Reasoning,48(4), 489–532.

    Google Scholar 

  • Manders, K. (2011). The Euclidean diagram (1995). In The Philosophy of Mathematical Practice: Paolo Mancosu, Oxford University Press edition.

    Google Scholar 

  • Miller, N. (2007). Euclid and his twentieth century rivals: Diagrams in the logic of Euclidean geometry. Studies in the theory and applications of diagrams. CSLI Publications, Stanford, Calif. OCLC: ocm71947628.

    Google Scholar 

  • Miller, N. (2012). On the inconsistency of Mumma’s Eu. Notre Dame Journal of Formal Logic, 53(1), 27–52.

    Article  Google Scholar 

  • Mumma, J. (2010). Proofs, pictures, and Euclid. Synthese, 175(2), 255–287.

    Article  Google Scholar 

  • Narboux, J., Janicic, P., & Fleuriot, J. (2018). Computer-assisted theorem proving in synthetic geometry. In M. Sitharam, A. S. John & J. Sidman (Eds.), Handbook of geometric constraint systems principles. Discrete Mathematics and Its Applications: Chapman and Hall/CRC.

    Google Scholar 

  • Planchon, G., & Hausberger, T. (2020). Un problème de CAPES comme premier pas vers une implémentation du plan B de Klein pour l’intégrale. In INDRUM 2020, Cyberspace (virtually from Bizerte), Tunisia. Université de Carthage, Université de Montpellier.

    Google Scholar 

  • Pottier, L. (2008). Connecting Gröbner bases programs with Coq to do proofs in algebra, geometry and arithmetics. In G. Sutcliffe, P. Rudnicki, R. Schmidt, B. Konev & S. Schulz (Eds.), Knowledge exchange: Automated provers and proof assistants, volume 418 of CEUR Workshop Proceedings, Doha. CEUR-WS.org: Qatar.

    Google Scholar 

  • Schwabhäuser, W., Szmielew, W., & Tarski, A. (1983). Metamathematische Methoden in der Geometrie. Berlin: Springer.

    Google Scholar 

  • Sinaceur, H. (1991). Corps et modèles: essai sur l’histoire de l’algèbre réelle. Vrin, Paris: Mathesis. J.

    Google Scholar 

  • Tarski, A. (1936). Introduction to logic and to the methodology of deductive sciences. New York: Dover Publications.

    Google Scholar 

  • Weber, K., & Alcock, L. (2004). Semantic and syntactic proof productions. Educational Studies in Mathematics, 56(3), 209–234.

    Article  Google Scholar 

  • Winsløw, C., & Grønbæk, N. (2014). Klein’s double discontinuity revisited: What use is university mathematics to high school calculus? arXiv:1307.0157 [math].

  • Winterstein, D. (2004). Dr. Doodle: A diagrammatic theorem prover. In Proceedings of IJCAR 2004.

    Google Scholar 

  • Winterstein, D., Bundy, A., & Jamnik, M. (2000). A proposal for automating diagrammatic reasoning in continuous domains. In Diagrams, pp. 286–299.

    Google Scholar 

  • Zhang, J.-Z., Chou, S.-C., & Gao, X.-S. (1995). Automated production of traditional proofs for theorems in Euclidean geometry. Ann. Math. Artif. Intell., 13(1–2), 109–138.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Narboux .

Editor information

Editors and Affiliations

Appendix: Verbatim of the Formal Proofs

Appendix: Verbatim of the Formal Proofs

We first give the formal proof of the fact that the sum of angles of a triangle is congruent to the flat angle.

figure f

Proof of Varignon’s theorem using the midpoint theorem:

figure g

Alternative proof using characterization of parallelogram using midpoints and coordinates:

figure h

A completely automatic proof using the area method:

figure i

A detailed proof script using the area method, the tactics highlights the key idea of eliminating points one by one from the goal, but the actual computation is implicit:

figure j

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narboux, J., Durand-Guerrier, V. (2022). Combining Pencil/Paper Proofs and Formal Proofs, A Challenge for Artificial Intelligence and Mathematics Education. In: Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (eds) Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-86909-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86909-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86908-3

  • Online ISBN: 978-3-030-86909-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics