Skip to main content

A Classification of Artificial Intelligence Systems for Mathematics Education

  • Chapter
  • First Online:
Mathematics Education in the Age of Artificial Intelligence

Part of the book series: Mathematics Education in the Digital Era ((MEDE,volume 17))

Abstract

This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in contemporary digital tools for Mathematics Education (ME). It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications; and at researchers in ME, for whom we clarify: (i) what the possibilities of the current AI technologies are, (ii) what is still out of reach and (iii) what is to be expected in the near future. We start our analysis by establishing a high-level taxonomy of AI tools that are found as components in digital ME applications. Then, we describe in detail how these AI tools, and in particular ML, are being used in two key applications, specifically AI-based calculators and intelligent tutoring systems. We finish the chapter with a discussion about student modeling systems and their relationship to artificial general intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will not enter into details regarding the similarities and differences in learning for AI and ME, as that discussion is slightly outside of the scope of this chapter.

  2. 2.

    https://photomath.app/.

  3. 3.

    https://socratic.org/.

  4. 4.

    https://math.microsoft.com/.

  5. 5.

    https://www.geogebra.org/.

  6. 6.

    https://github.com/google/mathsteps.

  7. 7.

    We discuss student modeling in more detail in Sect. 4.2.1.

  8. 8.

    https://www.wolfram.com/mathematica/.

  9. 9.

    https://www.maplesoft.com/.

  10. 10.

    https://www.wolframalpha.com/.

  11. 11.

    https://www.apple.com/siri/.

  12. 12.

    https://www.microsoft.com/cortana/.

  13. 13.

    https://developer.amazon.com/alexa/.

  14. 14.

    https://assistant.google.com/.

References

  • Abyaa, A., Idrissi, M. K., & Bennani, S. (2019). Learner modelling: Systematic review of the literature from the last 5 years. Educational Technology Research and Development, 67(5), 1105–1143.

    Article  Google Scholar 

  • Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

    Article  Google Scholar 

  • Arabshahi, F., Singh, S., & Anandkumar, A. (2018). Towards solving differential equations through neural programming. In ICML Workshop on Neural Abstract Machines and Program Induction (NAMPI).

    Google Scholar 

  • Arnau, D., Arevalillo-Herráez, M., Puig, L., & González-Calero, J. A. (2013). Fundamentals of the design and the operation of an intelligent tutoring system for the learning of the arithmetical and algebraic way of solving word problems. Computers & Education, 63, 119–130.

    Article  Google Scholar 

  • Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., et al. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115.

    Article  Google Scholar 

  • Asif, R., Merceron, A., Abbas Ali, S., & Haider, N. G. (2017). Analyzing undergraduate students’ performance using educational data mining. Computers & Education, 113, 177–194.

    Article  Google Scholar 

  • Baker, R. S. J. d., Goldstein, A. B., & Heffernan, N. T. (2010). Detecting the moment of learning. In International Conference on Intelligent Tutoring Systems (pp. 25–34). Springer.

    Google Scholar 

  • Baker, R., Walonoski, J., Heffernan, N., Roll, I., Corbett, A., & Koedinger, K. (2008). Why students engage in gaming the system behavior in interactive learning environments. Journal of Interactive Learning Research, 19(2), 185–224.

    Google Scholar 

  • Balacheff, N. (1993). Artificial intelligence and mathematics education: Expectations and questions. In T. Herrington (Ed.), 14th Biennal of the Australian Association of Mathematics Teachers (pp. 1–24), Perth, Australia, 1993. Curtin University.

    Google Scholar 

  • Balacheff, N. (1994). Didactique et intelligence artificielle. Recherches en Didactique des Mathématiques, 14, 9–42.

    Google Scholar 

  • Balacheff, N., & Kaput, J. J. (1996). Computer-based learning environments in mathematics (pp. 469–501). Netherlands, Dordrecht: Springer.

    Google Scholar 

  • Barrett, D., Hill, F., Santoro, A., Morcos, A., & Lillicrap, T. (2018). Measuring abstract reasoning in neural networks. In J. Dy & A. Krause (Eds.), Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research (Vol. 80, pp. 511–520). PMLR, 10–15 Jul 2018.

    Google Scholar 

  • Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., & Amodei, D. (2020). Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan & H. Lin (Eds.), Advances in neural information processing systems (Vol. 33, pp. 1877–1901). Curran Associates, Inc.

    Google Scholar 

  • Chollet, F. (2019). On the measure of intelligence. arXiv:1911.01547.

  • Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11), 4715–4729.

    Article  Google Scholar 

  • Cortez, P., & Silva, A. M. G. (2008). Using data mining to predict secondary school student performance. In A. Brito & J. Teixeira (Eds.), Proceedings of 5th Future Business Technology Conference (pp. 5–12). EUROSIS-ETI, April 2008.

    Google Scholar 

  • Danine, A., Lefebvre, B., & Mayers, A. (2006). Tides-using Bayesian networks for student modeling. In Sixth IEEE International Conference on Advanced Learning Technologies (ICALT’06) (pp. 1002–1007). IEEE.

    Google Scholar 

  • de Souza, M. A. F., & Varella Ferreira, M. A. G. (2002). Designing reusable rule-based architectures with design patterns. Expert Systems with Applications, 23(4), 395–403.

    Article  Google Scholar 

  • Fayek, H. M., Lech, M., & Cavedon, L. (2017). Evaluating deep learning architectures for speech emotion recognition. Neural Networks, 92, 60–68.

    Article  Google Scholar 

  • Font, L., Richard, P. R., & Gagnon, M. (2018). Improving QED-Tutrix by automating the generation of proofs. In P. Quaresma & W. Neuper (Eds.), Proceedings 6th International Workshop on Theorem proving components for Educational software (ThEdu’17). Electronic Proceedings in Theoretical Computer Science (Vol. 267, pp. 38–58). Open Publishing Association.

    Google Scholar 

  • Fu, H., Zhang, J., Zhong, X., Zha, M., & Liu, L. (2019). Robot for mathematics college entrance examination. In Electronic Proceedings of the 24th Asian Technology Conference in Mathematics, Mathematics and Technology, LLC.

    Google Scholar 

  • Furht, B. (2008). Encyclopedia of multimedia. Springer Science & Business Media.

    Google Scholar 

  • Ganesalingam, M., & Gowers, W. T. (2017). A fully automatic theorem prover with human-style output. Journal of Automated Reasoning, 58(2), 253–291.

    Article  Google Scholar 

  • Gauthier, T., & Kaliszyk, C. (2015). Premise selection and external provers for HOL4. In Proceedings of the 2015 Conference on Certified Programs and Proofs (pp. 49–57). ACM.

    Google Scholar 

  • Graesser, A. C., Conley, M. W., & Olney, A. (2012). Intelligent tutoring systems. In APA educational psychology handbook. Application to Learning and Teaching (Vol. 3, pp. 451–473). American Psychological Association.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Kajasilta, H., Apiola, M.-V., Lokkila, E., Veerasamy, A., & Laakso, M.-J. (2019). Measuring students’ stress with mood sensors: First findings. In International Conference on Web-Based Learning (pp. 92–99). Springer.

    Google Scholar 

  • Kansky, K., Silver, T., Mély, D. A., Eldawy, M., Lázaro-Gredilla, M., Lou, X., Dorfman, N., Sidor, S., Phoenix, S., & George, D. (2017). Schema networks: Zero-shot transfer with a generative causal model of intuitive physics. In International Conference on Machine Learning (pp. 1809–1818). PMLR.

    Google Scholar 

  • Koncel-Kedziorski, R., Hajishirzi, H., Sabharwal, A., Etzioni, O., & Dumas Ang, S. (2015). Parsing algebraic word problems into equations. Transactions of the Association for Computational Linguistics, 3, 585–597.

    Article  Google Scholar 

  • Kovács, Z., & Recio, T. (2020). GeoGebra reasoning tools for humans and for automatons. In Proceedings of the 25th Asian Technology Conference in Mathematics.

    Google Scholar 

  • Kovács, Z., Recio, T., Richard, P. R., Van Vaerenbergh, S., & Pilar Vélez, M. (2020). Towards an ecosystem for computer-supported geometric reasoning. International Journal of Mathematical Education in Science and Technology.

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 25). Curran Associates, Inc.

    Google Scholar 

  • Kurvinen, E., Kaila, E., Laakso, M.-J., & Salakoski, T. (2020). Long term effects on technology enhanced learning: The use of weekly digital lessons in mathematics. Informatics in Education, 19(1), 51–75.

    Article  Google Scholar 

  • Lamas, A., Tabik, S., Cruz, P., Montes, R., Martínez-Sevilla, Á., Cruz, T., & Herrera, F. (2021). MonuMAI: Dataset, deep learning pipeline and citizen science based app for monumental heritage taxonomy and classification. Neurocomputing, 420, 266–280.

    Article  Google Scholar 

  • Lample, G., & Charton, F. (2019). Deep learning for symbolic mathematics. In Proceedings of ICLR.

    Google Scholar 

  • Leduc, N. (2016). QED-Tutrix: Système tutoriel intelligent pour l’accompagnement des élèves en situation de résolution de problèmes de démonstration en géométrie plane. Ph.D. thesis, École Polytechnique de Montréal.

    Google Scholar 

  • Lee, D., Szegedy, C., Rabe, M. N., Loos, S. M., & Bansal, K. (2020). Mathematical reasoning in latent space. In Proceedings of ICLR.

    Google Scholar 

  • Li, S., & Deng, W. (2020). Deep facial expression recognition: A survey. IEEE Transactions on Affective Computing.

    Google Scholar 

  • Loos, S., Irving, G., Szegedy, C., & Kaliszyk, C. (2017). Deep network guided proof search. LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning.

    Google Scholar 

  • Loveland, D. W. (1978). Automated theorem proving: A logical basis. Elsevier.

    Google Scholar 

  • Meng-Leong, H. (2019, July). Future-ready strategic oversight of multiple artificial superintelligence-enabled adaptive learning systems via human-centric explainable AI-empowered predictive optimizations of educational outcomes. Big Data and Cognitive Computing,3(3), 46.

    Google Scholar 

  • Mitchell, T. M. (1997). Machine learning. McGraw-Hill.

    Google Scholar 

  • Molnar, C. (2019). Interpretable machine learning. Lulu Publishing.

    Google Scholar 

  • Pearl, J., Glymour, M., & Jewell, N. P. (2019). Causal inference in statistics: A primer. Wiley.

    Google Scholar 

  • Quaresma, P. (2020). Automated deduction and knowledge management in geometry. Mathematics in Computer Science, 14(4), 673–692.

    Article  Google Scholar 

  • Rabiner, L. R., & Juang, B. H. (1986). An introduction to hidden Markov models. IEEE ASSP Magazine, 3(1), 4–16.

    Article  Google Scholar 

  • Russell, S., & Norvig, P. (2009). Artificial intelligence: A modern approach (3rd ed.). USA: Prentice Hall Press.

    Google Scholar 

  • Sani, S. M., Bichi, A. B., & Ayuba, S. (2016). Artificial intelligence approaches in student modeling: Half decade review (2010–2015). IJCSN-International Journal of Computer Science and Network, 5(5).

    Google Scholar 

  • Saxton, D., Grefenstette, E., Hill, F., & Kohli, P. (2019). Analysing mathematical reasoning abilities of neural models. In Proceedings of ICLR.

    Google Scholar 

  • Scardapane, S., & Wang, D. (2017). Randomness in neural networks: An overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(2), e1200.

    Google Scholar 

  • Schoenfeld, A. H. (1985). Artificial intelligence and mathematics education: A discussion of Rissland’s paper. In E. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 177–187). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Schon, C., Siebert, S., & Stolzenburg, F. (2019). Using ConceptNet to teach common sense to an automated theorem prover. In Proceedings ARCADE 2019.

    Google Scholar 

  • Shute, V. J., & Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen (Ed.), Handbook of research on educational communications and technology (pp. 570–600). New York: Macmillan.

    Google Scholar 

  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354–359.

    Article  Google Scholar 

  • Smith, A., Min, W., Mott, B. W., & Lester, J. C. (2015). Diagrammatic student models: Modeling student drawing performance with deep learning. In International Conference on User Modeling, Adaptation, and Personalization (pp. 216–227). Springer.

    Google Scholar 

  • Vapnik, V. N. (1995). The nature of statistical learning theory. Berlin, Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan & R. Garnett (Eds.), Advances in neural information processing systems (Vol. 30, pp. 5998–6008). Curran Associates, Inc.

    Google Scholar 

  • Wang, Y., Liu, X., & Shi, S. (2017). Deep neural solver for math word problems. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 845–854).

    Google Scholar 

  • Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., & Tao Shen, H. (2018). MathDQN: Solving arithmetic word problems via deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence.

    Google Scholar 

  • Webel, C., & Otten, S. (2015). Teaching in a world with PhotoMath. The Mathematics Teacher, 109(5), 368–373.

    Article  Google Scholar 

  • Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. Morgan Kaufmann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Van Vaerenbergh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Vaerenbergh, S., Pérez-Suay, A. (2022). A Classification of Artificial Intelligence Systems for Mathematics Education. In: Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (eds) Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-86909-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86909-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86908-3

  • Online ISBN: 978-3-030-86909-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics