Skip to main content

Implementing STEM Projects Through the EDP to Learn Mathematics: The Importance of Teachers’ Specialization

  • 161 Accesses

Part of the Mathematics Education in the Digital Era book series (MEDE,volume 17)


The European Union promotes STEM education to train citizens for the needs of a growing technological society. The engineering design process (EDP) has been greatly suggested for school implementation. Researchers in mathematics education have, however, criticized this approach for its difficulty to exploit mathematical content. This chapter analyses how technology and mathematics teachers (out-of-field and in-field, respectively) address high-school mathematics content in STEM projects elaborated through the EDP. The results reveal that teachers’ specialization plays an important role in project execution. Out-of-field teachers unconsciously focus on technology curricular content with a lack of mathematics exploration, whereas in-field teachers rely on their mathematical experiences to develop the projects. Our findings show that teachers’ specialization affects content integration. This suggests that future secondary education teachers should  pursue a subject-specific degree followed by a continuous training where collaboration with other STEM-related teachers must be promoted.


  • STEM education
  • Engineering design process
  • Design-based learning
  • Mathematics teacher
  • Technology teacher

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86909-0_17
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-86909-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3


  • Akgun, O. E. (2013). Technology in STEM project-based learning. In R. M. Capraro, M. M. Capraro & J. R. Morgan (Eds.), STEM project-based learning. An integrated science, technology, engineering, and mathematics (STEM) Approach (pp. 65–75). Sense Publishers.

  • Al Salami, M. K., Makela, C. J., & de Miranda, M. A. (2017). Assessing changes in teachers’ attitudes toward interdisciplinary STEM teaching. International Journal of Technology and Design Education, 27(1), 63–88.

    CrossRef  Google Scholar 

  • Blanco, T. F., García-Piqueras, M., Diego-Mantecón, J. M., & Ortiz-Laso, Z. (2019a). Modelización matemática de la evolución de dos reactivos químicos. Épsilon, 101, 147–155.

    Google Scholar 

  • Blanco, T. F., Ortiz-Laso, Z., & Diego-Mantecón, J. M. (2019b). Proyectos STEAM con formato KIKS para la adquisición de competencias LOMCE. En J. M. Marbán, M. Arce, A. Maroto, J. M. Muñoz-Escolano & Á. Alsina (Eds.), Investigación en Educación Matemática XXIII (p. 614). SEIEM.

    Google Scholar 

  • Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S. (2016). Blended learning, e-learning and mobile learning in mathematics education. ZDM Mathematics Education, 48(5), 589–610.

    CrossRef  Google Scholar 

  • Borba, M. C., Askar, P., Engelbrecht, J., Gadanidis, G., Llinares, S., & Aguilar, M. S. (2017). Digital technology in mathematics education: research over the last decade. In G. Kaiser (Ed.), Proceedings of the 13th international congress on mathematics education (pp. 221–233). Springer.

  • Bruce-Davis, M. N., Gubbins, E. J., Gilson, C. M., Villanueva, M., Foreman, J. L., & Rubenstein, L. D. (2014). STEM high school administrators’, teachers’, and students’ perceptions of curricular and instructional strategies and practices. Journal of Advanced Academics, 25(3), 272–306.

  • Burghardt, M. D., & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as the core process in technology. Technology teacher, 64(1), 6–8.

    Google Scholar 

  • Cullen, C. J., Hertel, J. T., & Nickels, M. (2020). The roles of technology in mathematics education. The Educational Forum, 84(2), 166–178.

    CrossRef  Google Scholar 

  • Dašić, P., Dašić, J., Crvenković, B., & Šerifi, V. (2016). A review of intelligent tutoring systems in e-learning. Annals of the University of Oradea, (3), 85–90.

  • Davis, J. P., Chandra, V., & Bellocchi, A. (2019). Integrated STEM in initial teacher education: Tackling diverse epistemologies. In P. Sengupta, M. C. Shanahan & B. Kim (Eds.), Critical, transdisciplinary and embodied approaches in STEM education (pp. 23–40). Springer.

  • Diego-Mantecón, J. M. (2020). Classroom Implementation of STEM Education through technology: advantages and handicaps. In P. R. Richard, S. Van Vaerenbergh & M. P. Vélez (Eds.), First Symposium on Artificial Intelligence for Mathematics Education. Books of abstracts (AI4ME 2020) (pp. 9–10). Universidad de Cantabria.

  • Diego-Mantecón, J. M., Arcera, Ó., Blanco, T. F., & Lavicza, Z. (2019). An engineering technology problem-solving approach for modifying student mathematics-related beliefs: Building a robot to solve a Rubik’s cube. International Journal for Technology in Mathematics Education, 26(2), 55–64.

    Google Scholar 

  • Diego-Mantecón, J., Blanco, T., Ortiz-Laso, Z., & Lavicza, Z. (2021). STEAM projects with KIKS format for developing key competences. [Proyectos STEAM con formato KIKS para el desarrollo de competencias clave]. Comunicar, 66, 33–43.

    CrossRef  Google Scholar 

  • Domènech-Casal, J., Lope, S., & Mora, L. (2019). Qué proyectos STEM diseña y qué dificultades expresa el profesorado de secundaria sobre Aprendizaje Basado en Proyectos. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 16(2), 2203.

  • Dubé A.K., Alam S.S., Xu C., Wen R., Kacmaz G. (2019). Tablets as elementary mathematics education tools: Are they effective and why. In K. Robinson, H. Osana, & D. Kotsopoulo (Eds.), Mathematical learning and cognition in early childhood (pp. 223–248). Springer.

  • EL-Deghaidy, H., Mansour, N., Alzaghibi, M., & Alhammad, K. (2017). Context of STEM integration in schools: Views from in-service science teachers. EURASIA Journal of Mathematics, Science and Technology Education, 13(6), 2459–2484.

  • El-Khoury, S., Richard, P. R., Aïmeur, E., & Fortuny, J. M. (2005). Development of an Intelligent Tutorial System to Enhance Students’ Mathematical Competence in Problem Solving. In G. Richards (Ed.), E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 2042–2049). Association for the Advancement of Computing in Education (AACE).

    Google Scholar 

  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1).

  • English, L. D. (2019). Learning while designing in a fourth-grade integrated STEM problem. International Journal of Technology and Design Education, 29(5), 1011–1032.

    CrossRef  Google Scholar 

  • English, L. D. (2020). Facilitating STEM integration through design. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education: An international perspective (pp. 45–66). Springer.

  • English, L. D., & King, D. (2019). STEM Integration in Sixth Grade: Desligning and Constructing Paper Bridges. International Journal of Science and Mathematics Education, 17, 863–884.

    CrossRef  Google Scholar 

  • English, L. D., King, D., & Smeed, J. (2017). Advancing integrated STEM learning through engineering design: Sixth-grade students’ design and construction of earthquake resistant buildings. The Journal of Educational Research, 110(3), 255–271.

    CrossRef  Google Scholar 

  • European Union Council. (2018). Council Recommendation of 22 May 2018 on key competences for lifelong learning.

  • Eurostat. (2018). Smarter, greener, more inclusive? Indicators to Support the Europe 2020 Strategy (2018 Edition).

  • Fabian, K., Topping, K. J., & Barron, I. G. (2018). Using mobile technologies for mathematics: Effects on student attitudes and achievement. Educational Technology Research and Development, 66(5), 1119–1139.

    CrossRef  Google Scholar 

  • Fidai, A., Barroso, L. R., Capraro, M. M., & Capraro, R. M. (2020). Effects of engineering design process on science and mathematics. In 2020 IEEE Frontiers in education conference (FIE) (pp. 1–4). IEEE.

  • Frykholm, J., & Glasson, G. (2005). Connecting science and mathematics instruction: Pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127–141.

    CrossRef  Google Scholar 

  • Hall, C., Lundin, M., & Sibbmark, K. (2021). A laptop for every child? The impact of technology on human capital formation. Labour Economics, 69, 101957.

    CrossRef  Google Scholar 

  • Herro, D., Quigley, C., & Cian, H. (2019). The challenges of STEAM instruction: Lessons from the field. Action in Teacher Education, 41(2), 172–190.

    CrossRef  Google Scholar 

  • Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM education, 3(1).

  • Kovács, Z., Recio, T., Richard, P. R., Van Vaerenbergh, S., & Vélez, M. P. (2020). Towards an ecosystem for computer-supported geometric reasoning. International Journal of Mathematical Education in Science and Technology.

    CrossRef  Google Scholar 

  • Lasa, A., Abaurrea, J., & Iribas, H. (2020). Mathematical Content on STEM Activities. Journal on Mathematics Education, 11(3), 333–346.

  • Lavicza, Z., Prodromou, T., Fenyvesi, K., Hohenwarter, M., Juhos, I., Koren, B., & Diego-Mantecon, J. M. (2020). Integrating STEM-related technologies into mathematics education at a large scale. International Journal for Technology in Mathematics Education, 27(1), 3–12.

    Google Scholar 

  • Li, Y., Schoenfeld, A. H., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education. Journal for STEM Education Research, 2, 93–104.

    CrossRef  Google Scholar 

  • Lin, K. Y., & Williams, P. J. (2017). Two-stage hands-on technology activity to develop preservice teachers’ competency in applying science and mathematics concepts. International Journal of Technology and Design Education, 27(1), 89–105.

    CrossRef  Google Scholar 

  • Maass, K., Cobb, P., Krainer, K., & Potari, D. (2019a). Different ways to implement innovative teaching approaches at scale. Educational Studies in Mathematics, 102(3), 303–318.

    CrossRef  Google Scholar 

  • Maass, K., Geiger, V., Ariza, M. R., & Goos, M. (2019b). The role of mathematics in interdisciplinary STEM education. ZDM Mathematics Education, 51(6), 869–884.

    CrossRef  Google Scholar 

  • Margot, K. C., & Kettler, T. (2019). Teachers’ perception of STEM integration and education: A systematic literature review. International Journal of STEM Education, 6, 2.

    CrossRef  Google Scholar 

  • Martín-Páez, T., Aguilera, D., Perales-Palacios, F. J., & Vílchez-González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822.

    CrossRef  Google Scholar 

  • Mohd-Hawari, A. D., & Mohd-Noor, A. I. (2020). Project Based Learning Pedagogical Design in STEAM Art Education. Asian Journal of University Education, 16(3), 102–111.

  • Moore, T. J., Stohlmann, M. S., Wang, H. H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In Ş. Purzer, J. Strobel & M. E. Cardella (Eds.), Engineering in pre-college settings: Synthesizing research, policy, and practices (pp. 35–60). Purdue University Press.

  • Nelson, T. H., & Slavit, D. (2007). Collaborative inquiry among science and mathematics teachers in the USA: Professional learning experiences through cross-grade, cross-discipline dialogue. Journal of in-Service Education, 33(1), 23–39.

    CrossRef  Google Scholar 

  • Niss, M., Bruder, R., Planas, N., Turner, R., & Villa-Ochoa, J. A. (2017). Conceptualisation of the role of competencies, knowing and knowledge in mathematics education research. In G. Kaiser (Ed.), Proceedings of the 13th international congress on mathematics education (pp. 235–248). Springer.

  • OECD. (2019). PISA 2018 results (Volume I): What students know and can do. OECD Publishing.

    CrossRef  Google Scholar 

  • Ortiz-Laso, Z. (2020). STEAM activities with KIKS format. In P. R. Richard, S. Van Vaerenbergh & M. P. Vélez (Eds.), First symposium on artificial intelligence for mathematics education. Books of abstracts (AI4ME 2020) (pp. 6–7). Universidad de Cantabria.

  • Pai, K. C., Kuo, B. C., Liao, C. H., & Liu, Y. M. (2021). An application of Chinese dialogue-based intelligent tutoring in remedial instruction for mathematics learning. Educational Psychology, 41(2), 137–152.

    CrossRef  Google Scholar 

  • Potari, D., Psycharis, G., Spiliotopoulou, V., Triantafillou, C., Zachariades, T., & Zoupa, A. (2016). Mathematics and science teachers’ collaboration: searching for common grounds. In C. Csíkos, A. Rausch, & I. Szitányi (Eds.), Proceedings of the 40th conference of the international group for the psychology of mathematics education (pp. 91–98). PME.

    Google Scholar 

  • Prodromou, T. (2014). GeoGebra in teaching and learning introductory statistics. Electronic Journal of Mathematics & Technology, 8(5), 363–376.

    Google Scholar 

  • Prodromou, T., & Lavicza, Z. (2017). Integrating technology into mathematics education in an entire educational system—Reaching a critical mass of teachers and schools. International Journal for Technology in Mathematics Education, 24(4), 1–6.

    Google Scholar 

  • Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: Implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410–426.

    CrossRef  Google Scholar 

  • Richard, P. R., Fortuny, J. M., Gagnon, M., Leduc, N., Puertas, E., & Tessier-Baillargeon, M. (2011). Didactic and theoretical-based perspectives in the experimental development of an intelligent tutorial system for the learning of geometry. ZDM–The International Journal on Mathematics Education, 43(3), 425–439.

  • Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018a). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2.

  • Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2018b). The influence of teachers’ attitudes and school context on instructional practices in integrated STEM education. Teaching and Teacher Education, 71, 190–205.

  • Thibaut, L., Knipprath, H., Dehaene, W., & Depaepe, F. (2019). Teachers’ attitudes toward teaching integrated STEM: The impact of personal background characteristics and school context. International Journal of Science and Mathematics Education, 17(5), 987–1007.

    CrossRef  Google Scholar 

  • Toma, R. B., & García-Carmona, A. (2021). «De STEM nos gusta todo menos STEM». Análisis crítico de una tendencia educativa de moda. Enseñanza de las ciencias, 39(1), 65–80.

  • Triantafillou, C., Psycharis, G., Potari, D., Bakogianni, D., & Spiliotopoulou, V. (2021). Teacher educators’ activity aiming to support inquiry through mathematics and science teacher collaboration. International Journal of Science and Mathematics Education.

    CrossRef  Google Scholar 

  • Ubuz, B. (2020). Examining a technology and design course in middle school in Turkey: Its potential to contribute to STEM Education. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM Education: An international approach (pp. 295–312). Springer.

  • Vale, C., Campbell, C., Speldewinde, C., & White, P. (2020). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Mathematics Education, 18(3), 463–483.

    CrossRef  Google Scholar 

  • Vinnervik, P. (2020). Implementing programming in school mathematics and technology: Teachers’ intrinsic and extrinsic challenges. International Journal of Technology and Design Education.

    CrossRef  Google Scholar 

  • Watson, J., & Munkoe, M. (2019). Economic Outlook Autumn 2019 – EU economy weakens as trade tensions continue. Retrieved from

  • Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: exploring mathematics outside the classroom. ZDM—The International Journal on Mathematics Education, 42(7), 789–799.

  • Zulnaidi, H., & Zamri, S. N. A. S. (2017). The effectiveness of the GeoGebra software: The intermediary role of procedural knowledge on students’ conceptual knowledge and their achievement in mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 2155–2180.

Download references


This study was supported by FEDER/Ministerio de Ciencia, Innovación y Universidades—Agencia Estatal de Investigación/ project EDU2017-84979-R.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Jose-Manuel Diego-Mantecón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Diego-Mantecón, JM., Ortiz-Laso, Z., Blanco, T.F. (2022). Implementing STEM Projects Through the EDP to Learn Mathematics: The Importance of Teachers’ Specialization. In: Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (eds) Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86908-3

  • Online ISBN: 978-3-030-86909-0

  • eBook Packages: EducationEducation (R0)