Abstract
Virtual reality provides an interesting environment to teach and learn 3D geometry. In this article, we discuss the use of Neotrie VR as a 3D whiteboard for distance teaching that we have carried out during the 2020–21 academic year, with students of the Mathematics degree at the University of Almería. We describe a concrete case on parametric equations of surfaces, for which a 3D graphing calculator has been implemented, as well as a stereoscopic view camera to show 3D videos, which the students can view with cheap stereoscopic glasses for mobile phones. From the side of the teacher, it is certainly much easier to explain 3D concepts on a 3D whiteboard like Neotrie than to use paper and pencil, blackboard, or any 2D digital tablet. Student feedback is also analyzed after using various supports for manipulating and observing learning, including GeoGebra, which can also serve to know how to use virtual reality for distance learning.
This is a preview of subscription content, access via your institution.
Buying options














Notes
- 1.
- 2.
- 3.
- 4.
See for instance the project Holo-Math (https://holo-math.org/) to application in mathematics.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
Geometric artwork in augmented and virtual realityhttps://www.antonbakker.com/momath.
References
Cangas, D., Crespo, D., Rodríguez, J. L., & Zarauz, A. (2019a). Neotrie VR: Nueva geometría en realidad virtual. Pi-InnovaMath, 2, 1–8.
Cangas, D., Morga, G., & Rodríguez, J. L. (2019b). Geometric teaching experience with Neotrie VR. Psychology, Society, & Education, 11(3), 355–366.
Chavil, D. Y., Rodríguez, J. L., & Romero, M. I. (2020). Introducción al concepto de fractal en enseñanza secundaria usando realidad virtual inmersiva. Desde Sur Rev Cienc Hum Soc, 12, 615–629.
Bambury, S. (2021). Immersive Tech For Distance. Learning pt. 1. https://www.virtualiteach.com/post/immersive-tech-for-distance-learning-pt-1. Cited February 17, 2021.
Codina, A., & Morales C. (2020). Cognición y metacognición en geometría con realidad virtual utilizando Neotrie VR. Investigación en didáctica de la matemática, homenaje a Encarnación Castro, Editorial Octaedro 2020 (pp. 155–178).
Dalgarno, B., & Lee, M. (2010). What are the learning affordances of 3-D virtual environments? British Journal of Educational Technologies, 41(1, Special Issue: Crossing Boundaries: Learning and Teaching in Virtual Worlds), 10–32.
Derks, L. (2020). How to explain virtual reality. https://ictlaurens.medium.com/how-to-explain-virtual-reality-415c2dc89277. Cited November 4th, 2020.
Dimmel, J., & Bock, C. (2019). Dynamic mathematical figures with immersive spatial displays: The case of handwaver. In G. Aldon & J. Trgalová (Eds.), Technology in mathematics teaching. Mathematics Education in the Digital Era (Vol. 13). Cham: Springer.
Duval, R. (2021). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. In Annales de Didactique et de Sciences Cognitives (Vol. 5, pp. 37–65). IREM de Strasbourg, France.
Extremera, J., Vergara, D., Dávila, L. P., & Rubio, M. P. (2021). Virtual and augmented reality environments to learn the fundamentals of crystallography. Crystals, 10(6), 456, 1–18.
Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111(23), 8410–8415.
Gálvez, J. F., & y Rodríguez, J. L. (2019). Manipulación y clasificación de superficies compactas. Bubok Publishing SL.
Hart, V., Hawksley, A., Matsumoto, E., & Segerman, H. (2017). Non-euclidean virtual reality I: Explorations of \(H^3\). In Proceedings of Bridges 2017: Mathematics, Music, Art, Architecture, Culture (pp. 33–40) Waterloo, Canada.
Hawkins, A., & Sinclair, N. (2008). Explorations with sketchpad in topogeometry. The International Journal of Computer Mathematics, 13, 71–82.
Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). March). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106, 150–165.
Kaufmann, H., Schmalstieg, D., & Wagner, M. (2000). Construct3D: A virtual reality application for mathematics and geometry education. Education and Information Technologies, 5, 263–276.
Kaufmann, H. (2009). Virtual environments for mathematics and geometry education. Themes in Science and Technology Education, 2(1), 131–152.
Kosniowski, C. (1980). A first course in algebraic topology. Cambridge University Press, (first printed version, 1980; online publication 2010). https://doi.org/10.1017/CBO9780511569296.
Ng, O., & Sinclair, N. (2018). Drawing in space: Doing mathematics with 3D pens. In L. Ball, P. Drijvers, S. Ladel, H.-S. Siller, M. Tabach, & C. Vale (Eds.), Uses of technology in primary and secondary mathematics education (pp. 301–313). Cham: Springer.
Prodromou, T. (Ed.). (2020). Augmented reality in educational settings. Leiden Boston: Brill Sense.
Radiantia, J., Majchrzaka, T.A., Frommb, J., & Wohlgenannt, I. (2020). A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Computer & Education, 147.
Rodríguez J. A., & Romero, M. I. (2019). Optimización de superficies a partir de un volumen dado mediante realidad: una experiencia en \(6^\circ \) de Primaria. Actas del Congreso Innovación y tecnología en contextos educativos, UmaEditorial (pp. 583–593).
Rodríguez, J. L., Romero, I., & Codina, A. (2021). The Influence of NeoTrie VR’s immersive virtual reality on the teaching and learning of geometry. Mathematics, 9, 2411. https://doi.org/10.3390/math9192411.
Sánchez, C. (2020). Visualización y tratamiento de gráficas 3D en Neotrie VR, final degree project, Universidad de Almería.
Sinclair, N., Bartolini, B., Maria, G., de Villiers, M., Jones, K., Kortenkamp, U., Leung, A., & Owens, K. (2016). Recent research on geometry education: An ICME-13 survey team report. ZDM Mathematics Education, 48, 691–719.
Song, K. S., & Lee, W. Y. (2002). A virtual reality application for geometry classes. Journal of Computer Assisted Learning, 18, 149–156.
Weeks. J. (2001). Exploring the shape of space (2001) and the Jeffrey Weeks’ geometry and topology website. http://www.geometrygames.org/.
Acknowledgements
To Diego Cangas for the daily technical support, and to the members of the Neotrie project, who with their contributions are enriching the software to make it more useful and interesting to teach geometry. Special thanks to Isabel Romero for the accurate improvements made in all the revisions of this work, as well as the effort and substantial changes proposed by the referees. The author was partially funded by the Ministry of Science and Innovation grant PID2020-117971GB-C22 and FEDER-Junta de Andalucía grant UAL2020-SEJ-B2086.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rodríguez, J.L. (2022). Exploring Dynamic Geometry Through Immersive Virtual Reality and Distance Teaching. In: Richard, P.R., Vélez, M.P., Van Vaerenbergh, S. (eds) Mathematics Education in the Age of Artificial Intelligence. Mathematics Education in the Digital Era, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-86909-0_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-86909-0_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-86908-3
Online ISBN: 978-3-030-86909-0
eBook Packages: EducationEducation (R0)