Keywords

1 Major Producers, Importers and Exporters of Coal: Main Trends

Coal is the second largest source of primary energy in the world (26% in 2019), after oil. Coal is the main source of electricity worldwide (36% in 2019) and also the largest source of energy for steel and cement production, two essential materials for the modern world. Around two-thirds of coal is used for power generation, around 15% is used by the iron and steel industry, 6% by the cement industry and the balance is used in residential heating and various industrial applications.

The world’s largest producer is China (3550 Mt. in 2018), which represents 45% of the global production (7813 Mt), followed by India (771 Mt), United States (685 Mt), Indonesia (549 Mt) and Australia (483 Mt). Russia, South Africa, Germany, Poland and Kazakhstan complete the list of the ten largest producers. The world’s largest consumer is also China (3756 Mt. in 2018), representing 49% of the global consumption (7721 Mt), followed by India (985 Mt), United States (615 Mt), Russia (232 Mt) and Germany (215 Mt). South Africa, Japan, Korea, Poland and Turkey complete the list of the ten largest producers.

Those lists and figures require two important caveats. Regarding the geographical breakdown, there are two different trends in the world: in Europe and United States, coal use is collapsing through a combination of sluggish electricity demand, climate and environmental policies, lower gas prices and direct coal phase out policies in some countries. In 1990, the United States and the EU represented 40% of the global coal demand. In 2019, it was 12%. By contrast, in Asia there is no indication of coal demand declining, while in many Asian countries, coal consumption is growing steadily. Germany, for example, the fifth largest consumer in 2018, might disappear from the top ten list very soon. The second caveat refers to the unit used to measure coal. Owing to the wide range of calorific values for different coals (CV), that is, the energy contained in the fuel per mass unit of coal, the volumes of coal measured by mass (tonnes) and measured by energy (tonne coal equivalent) can be very different if different qualities are involved. Using energy terms, China’s share in the global consumption is well over 50% and Germany’s coal consumption falls behind South Africa, Japan and Korea. While the energy basis is more relevant than mass, especially when compared with other sources, most people in the industry use mass, and this is the criteria followed in this chapter.

Looking at the country breakdown, it is evident that the most distinctive characteristic of the global coal market, compared with other fossil fuels, is the full dominance of one country, China. United States, the world’s largest oil and gas producer in 2018, represented 13% of global oil production and 20% of gas, very far from China’s 45%. On the demand side, United States, also the largest oil and gas consumer, has a share in the global consumption around 20% for both oil and gas, again far from China’s 49% in coal. Another unique feature of China’s dominance is that the Chinese domestic market is three times bigger than the global international coal trade, in which China is the largest importer. This has major implications for trade and price setting across the world.

Despite internationally traded coal is gradually increasing its share in global coal use for some years, coal is the most common domestic fossil fuel, as 82% of global coal is consumed in the country where it is mined, compared with 68% for gas and 42% for oil. Lower energy density or calorific value, as traded coal has typically a CV of 20–30 GJ/t compared with oil (over 40 GJ/t) or gas (over 50 GJ/t), is one of the main reasons for it, since transportation costs increase with lower energy density. Less than 20GJ/t CV coal is mostly consumed at mine-mouth.

Out of 1.4 bt of coal internationally traded in 2018, 1060 Mt. were thermal coal (including small volumes of anthracite and lignite) and the balance was coking coal (including hard coking coal, semi-soft coking coal and pulverised coal injection (PCI)). Seaborne coal trade volume of 1280 Mt. (of which 1 bt of thermal and 280Mt of coking coal) represents the second largest bulk traded commodity globally by mass after iron ore. International coal trade represented revenues over $140 billion in 2018. Indeed, this amount largely depends on prevalent prices, which change substantially from year to year. In 2019, trade revenues were around $100 billion, owing to lower prices compared with 2018.

The largest exporters of thermal coal are Indonesia (456 Mt in 2019, including 85 Mt of lignite), Australia (212 Mt), Russia (193 Mt, including 25 Mt of anthracite and 12 Mt of lignite), South Africa (79 Mt), Colombia (76 Mt) and United States (34 Mt). The largest exporter of metallurgical coal by far is Australia (183 Mt in 2019), followed by United States (50 Mt), Mongolia (34 Mt), Canada (31 Mt) and Russia (25 Mt). Mongolia plays a different role than the others in the international market, as it is a landlocked country, and the destination of all its coking coal exports is China. By revenue, owing to its dominance in the more expensive metallurgical coal market, Australia is the largest exporter by far.

The largest importers of thermal coal are China (225 Mt in 2019, including around 10 Mt of anthracite and 100 Mt of lignite), India (187 Mt), Japan (143 Mt), Republic of Korea (123 Mt) and Chinese Taipei (65 Mt). The largest importers of metallurgical coal are China (75 Mt in 2019), India (61 Mt), Japan (43 Mt) and Korea (25 Mt). Whereas coal exports are dominated by six countries in the thermal space and by five in the coking coal space, imports are more widely distributed, as most countries in the world import coal either for power generation or for industrial applications.

Given the dominance of big domestic markets (China, India or United States) in the global coal consumption, the largest coal-producing companies dedicate their production to serve domestic markets. Among the world’s eight largest producers, Coal India is a state-owned company serving the domestic Indian market, Peabody Energy is a US company focused on the domestic market and the other six are state-owned Chinese companies serving mostly the domestic Chinese market (Chinese exports represent 0.2% of its production). Glencore, the largest coal exporter in the world, is only the ninth largest producer. An important trend in the last years is that the big diversified companies are leaving the coal business. Rio Tinto sold its last coal mining assets in Australia in 2018. BHP spun off most of its thermal assets into a new company, South 32, and now is almost exclusively a coking coal producer. Anglo American has announced the spin-off of its South African export-oriented thermal assets in the coming years after having sold domestic-oriented mines few years ago. In short, among the big diversified miners, only Glencore has maintained its position on coal, although in 2019 it committed to keep coal production below 150 Mt, which limits future potential growth. Pure coal players, like SUEK, Adaro, Peabody Energy, Bumi, Yancoal Australia, Drummond, Whitehaven, are experiencing growing pressure from investors due to climate change concerns. Interestingly, there has not been shortage of buyers when coal assets have been put on sale.

Traditionally, international coal trade has taken place in two main markets, with different dynamics, although interconnected: the Atlantic Basin and the Pacific Basin. In the Atlantic, Europe was the main destination, and United States, South Africa and, to a lesser extent, Colombia were the main exporters. In the Pacific, Japan was the main destination, with Korea and Taiwan also playing a relevant role. Australia was the main supplier, complemented by Indonesia. In the last decade, coal markets have changed dramatically. China, which was in 2003 the world’s second largest coal exporter behind only Australia, shifted to a net import position in 2009. Two years later, it became the world’s largest importer surpassing Japan. This shift, together with the perspective that Chinese imports could continue such strong growth for some years, was paramount to explaining the dynamics of coal over the last decade, including the oversupply and lower prices of the 2012–2016 period.

China’s unrivalled dominance on coal markets means that understanding how Chinese domestic market works is key to understanding how global coal markets work. In particular, it is important to understand the geography of coal production and consumption in China. The three largest coal-producing provinces in Northwest China, Inner Mongolia (976 Mt. in 2018), Shanxi (893 Mt) and Shaanxi (623 Mt), account for almost three quarters of total Chinese production, and the majority of the coal exported to Chinese provinces. Coal from these provinces is transported to the northern ports by rail, as all the seven major ports in the north, the so-called N7 ports (Qinhuangdao, Tianjin, Jingtang, Huanghua, Qingdao, Rizhao and Lianyungang), are connected to, at least, one major rail line. Then coal is shipped to the consumption centres throughout the coast, mostly East China (Shanghai and Zhejiang) and Southeast China (Guangdong and Fujian), with smaller volumes shipped to Guangxi and Shandong. The volume shipped from the northern ports to the coastal regions is around 750 Mt, per year. If we now add 300 Mt of coal imported in China, it results that the seaborne coal trade in coastal China (both domestic and international) is larger than the seaborne coal trade outside China. The arbitrage between domestic and international supply in coastal China is pivotal to set prices across the world. The Chinese government, while using coal imports to balance the domestic markets, also tries to rein in imports to protect Chinese producers, through a variety of policies, not always implemented in a fully transparent way. In 2014, it seems that the government sent Directives to the utilities to recommend reducing coal imports. In 2015, quality control of trace elements gave rise to delays and rejection of imports. In 2016, the 256 working day policy triggered prices in China and elsewhere. In 2018, import quotas were established. Those changing policies, given China’s dominance, have a deep impact on the global coal market.

Another country where domestic and international markets interact is the United States, unlike the other major exporting countries, where domestic and international markets are largely disconnected for quality, geography and contractual reasons. There are five main producing areas with different qualities, costs and prices: Central Appalachia, Northern Appalachia, Illinois Basin, Uinta Basin and Powder River Basin. Whereas domestic prices are much lower than international prices, when transportation costs, including domestic transportation, are included, most US coal is hardly competitive in the international markets. This is the reason why United States is a swing supplier of thermal coal in the Atlantic Coast. As delivery costs of US producers are generally higher than Russian, South African or Colombian, when markets are tight and prices go up, US coal jumps in. On the contrary, when the market is eased and prices go down, US producers refrain. An exception is Illinois coal, but its sulphur content obliges to sell at a discount or to blend it with low sulphur coal.

2 Different Coal Qualities and Price Discovery Tools

2.1 Quality

Coal is a sedimentary rock, made up of old phytomass, that is, trees and plants, which has been buried under high pressure and temperature in the absence of oxygen, in a process lasting from tens of millions of years for young lignite up to hundreds of millions of years for old anthracite. During this transformation, moisture in the original phytomass has been gradually disappearing, while carbon is preserved. Given the different origins, ages and circumstances involved in the process of coal formation, coal presents a much wider variation than the other fossil fuels, that is, oil and gas, as the range of the different parameters defining coal quality changes in a very broad range. Moisture, for example, which can be less than 5% in some anthracites, can reach 50% in some lignites. Ash content, volatile matter, sulphur and other impurities also present a wide variation throughout different coals. In fact, reflecting the wide variety of coal, there are also many different classifications across the world. The most common way for classifying coal refers to the ranking of coal, that is, how advanced has been the transformation from the original phytomass into coal, also called coalification. From more to less coalification, which is almost equal to say from more to less carbon, and from less to more moisture, coal is classified as anthracite, bituminous coal, subbituminous coal and lignite. In general this classification also places coal from more to less calorific value, with two important caveats. Firstly, some bituminous coal can have higher CV than anthracite owning to higher hydrogen content. Secondly, ash has no energy content, and therefore, the more ash the lower CV for each rank. However, although this is the most used classification for coal, for commercial purposes a more consumption-oriented classification is used. At global level, most of coal (around 80%) is burned to produce heat to be used either directly or mostly to generate steam to move a turbine as part of the Balance of the Plant to produce electricity. Around 15% of coal is not burned, but subject to a pyrolysis to produce coke, a very carbon-intensive fuel, of which around 90% is used to produce iron in the blast furnace. Less than 5% of coal is used in various applications, the main one being gasification, in which coal is blown with air, steam, oxygen or a combination of them to obtain syngas, which can be used to produce fertilisers, hydrogen, chemicals or electricity. There are also a variety of coal products and by-products used for very specific purposes. Therefore, in practical terms, along this chapter we will refer to a more market-based classification, distinguishing between thermal coal—including anthracite and lignite—and metallurgical coal. For thermal coal, for which energy is the main output, CV is the main determinant, and the content of sulphur, ash and other impurities is penalised. Anthracite, which represents only a fraction of bituminous and sub-bituminous coal, is used for different purposes depending on its quality. Pricing of anthracite depends on its quality and use. Lignite, due to high moisture content, that is, low calorific value and high transportation costs, is mostly used mine-mouth or transformed nearby. The volumes of lignite internationally traded are small, and generally follow thermal coal practices. For coking coal, its behaviour in the blast furnace is the most important characteristic, and hence, coke strength after reaction (CSR) and coke reactivity index (CRI) are the main parameters when pricing. Like thermal coal, the content of impurities such as ash, sulphur and phosphorus is penalised. PCI, coal injected in the blast furnace to save coke, is included in the metallurgical coal category. It represents only a fraction of coking coal and it is usually priced at a discount to coking coal.

2.2 Some Concepts on Coal Mining

Coal price, like so many other goods, is derived from supply and demand conditions. However, thermal coal prices—coking coal volatility is exacerbated by geographical concentration—are less volatile than oil and gas prices. Coal mining, although capital-intensive, is less capital-intensive than oil and gas production, so variable costs for coal mining and inland transportation—the so-called FOB cash costs—make up a higher share of full costs than for oil and gas. Therefore, FOB cash costs drive coal prices more than in gas and oil, especially in a situation of oversupply, when most analysts work under the assumption, supported by experience, that market prices find the floor once they reach the FOB cash-costs of 90% of producers. Indeed, take-or-pay contracts with rails and ports operators are used very frequently in some exporting countries, and this has to be taken into account. If FOB cash cost of producer A is $70/t, of which $20/t is take-or-pay contract with the rail, it will incur in a loss of $10/t selling coal at $60/t, but it is saving $10/t as the rail cost is sunk, so the effective FOB cash cost is $50/t. In addition, coal storage is much simpler/cheaper than oil or gas storage, which limits the potential for prices plummeting. Lack of storage is very much related to price spikes both upside and downside. For example, negative prices in the wholesale electricity markets can occur, as electricity storage is very expensive. Negative prices in some gas hubs can also occur, and even in April 2020 for the first time ever US oil prices were into the red zone, due to lack of storage capacity during a supply-demand imbalance.

2.3 Price Discovery

Coal price discovery takes place in both the physical and the derivative markets, which currently operate with enough liquidity in many segments. From around 2011 on, there has been a growing segmentation by quality of the thermal coal market, with an increasing share of off-spec coal trade. Although the prices of different qualities are usually correlated, the spread can change dramatically. The gap between Newcastle FOB prices for 6000 kcal/kg and 5500 kcal/kg was $9/t (11% discount) in March 2017 and $51/t (45% discount) in August 2018. In the short term, issues in the supply side, like disruptions in mining production, freight bottlenecks, restrictions in port capacity, will have a bullish impact on prices. Likewise, speculation in the financial market in some particular segment can have an impact on the short-term prices, but in the long term, it is believed that fundamentals will prevail. Price discovery is completed with other tools, like broker sheets, trade publications and supply cash-cost information. Given the relevance of cash cost at determining coal price, most of the market players use commercial companies to assess the supply cash cost curve, including the impact of relative movements of currency exchanges and oil price, as the cost of delivered coal depends on oil price. Coal mining, in particular open pit mining, is diesel fuel-intensive, and transportation costs—which indeed depend on oil price—are an important share of coal delivery cost. Whereas coking coal faces only weak competition (Electric Arc Furnace can compete with Basic Oxygen Furnace only up to a point, depending on scrap availability), coal for power generation has to compete directly with gas, and in the longer term, with other generation sources, that is, nuclear and renewables. Therefore, coking coal prices move more driven by a direct supply-demand balance, whereas thermal coal is also impacted by gas and CO2 prices, electricity policies and so on.

For thermal coal, given the great variety existing, there are as many different qualities as anyone can define. As already discussed, the volatile content and amount of impurities contained in coal (sulphur is the main one, but also ash is relevant) are used for defining coal quality, with relevance for price, but of course CV is the main parameter.

There are many different international commercial terms (incoterms), which define the allocation of costs between buyer and seller, but in this section only FOB, CIF and CFR will be used. FOB (Free on Board) typically used for pricing coal in the exporting ports refers to the price paid once coal is loaded in the ship. CIF (cost, insurance, freight) refers to the price including cost of coal, insurance and freight and it is typically used for imported coal in receiving ports. CFR (cost, freight) is also used for coal received in imported coal, but it does not include insurance costs. As CIF and CFR (in $/t) include freight, ship’s size is usually included in the price assessment. For thermal coal, specifications of calorific value can refer to high calorific value (GAR, gross as received) or to low calorific value (NAR, net as received). NAR is typically around 5% lower than GAR (the exact relation depends on moisture and hydrogen content).

In the physical market, the price markers assessed by Price Reporting Agencies (PRAs) play a pivotal role in price discovery. PRAs are private organisations without vested interest on the level of the price they report, which compete between them to offer the best assessment and which follow the principles set up by the International Organisation of Securities Commissions (IOSCO). The main PRAs operating in the international coal market are Argus, S&P Global Platts and IHS Markit (formerly McCloskey).

2.4 Thermal Coal Qualities

Traditionally, standard traded coal CV has been 6000 kcal/kg NAR, with sulphur content limited to less than 1%, with three main price markers for coal of that quality—API2, API4, API6—produced jointly by Argus and IHS Markit/McCloskey. API2 is a weekly assessment of CIF price for coal imported in ARA (Amsterdam-Rotterdam-Antwerp) hub. API4 is a weekly assessment of FOB price for coal exported from Richards Bay port in South Africa, and API6 is a weekly assessment of FOB price for coal exported from Newcastle port in New South Wales, Australia. In the last decade, both the demand and the supply side experienced substantial changes. Firstly, the emergence of new major importers, that is, China and India, which valued costs as much as quality or security. Secondly, the ramp up of Indonesian exports, which became the largest thermal coal exporter by far, doubling thermal coal exports from Australia, the second largest. Most of coal exported by Indonesia is out of the 6000 kcal/kg specification and low or very low sulphur, suitable for blending with high sulphur Chinese coal, and hence, a good deal for utilities in coastal China. Given the increasing off-spec demand, traditional 6000 kcal/kg exporters like Australia and South Africa have also increased their high-ash coal exports to some degree. In short, the market has changed dramatically, and currently, coal out of API2/API4 specifications represents the bulk of the seaborne coal trade, accounting for almost two thirds of the volumes. Answering the need for new markers for new coal flows, the PRAs have created price markers for them. In the early 2010s Argus and IHS Markit launched API8 assessing CFR price of 5500 kcal/kg coal imported in South China (Guangzhou), API3 assessing FOB price of exported 5500 kcal/kg coal from Richards Bay and API5, assessing FOB price of 5500 kcal/kg coal exported from Newcastle. For Indonesian coal, for example, Argus/CoalIndo offer price markers called ICI1, ICI2, ICI3, ICI4 and ICI5, assessing coal of 6500 kcal/kg GAR (6200 NAR), 5800 kcal/kg GAR (5500 NAR), 5000 kcal/g GAR (4600 NAR), 4200 kcal/kg GAR (3800 NAR) and 3400 kcal/kg GAR (3000 NAR), respectively. ICI4 is the most relevant and liquid index. Poorer quality involves a price discount reflecting higher logistics costs, as it is necessary to deal with more mass for the same energy, and lower efficiencies during the final consumption, associated with high moisture (in the case of Indonesia), high ash and so on. As a very rough rule of thumb, 3000 kcal/kg coal price can be one third of 6000 kcal/kg.

Given China’s global impact, price markers in China are very relevant across the world. There are assessments for a great variety of coal trade in China, especially in terms of CVs, for which 5500 kcal/kg is the most relevant. Regarding the geography, for FOB prices Qinhuangdao is the most relevant origin, and for CFR is South China (Guangzhou). Bohai Rim Steam-Coal price Index—a benchmark for a basket of products in northern ports of China—has been traditionally the most relevant price assessment, as it is often used by the government to set policies, but for commercial traders CCI5500, published by Fenwei, also a composite index assessing spot and contract prices, is the main reference.

3 Major International Contracts

3.1 Thermal Coal

In 1996, the Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market of electricity was adopted, obliging all the EC (now EU) countries to de-regulate their electricity markets. Liberalisation of European markets changed the market dramatically. With liquid markets for power, gas, CO2 and coal, spot trade combined with hedging strategies dominate the trade in Europe, and contracts have virtually disappeared. There are still few countries in the Atlantic procuring coal through term contracts, but both length of the contracts and volumes are shrinking.

By contrast, in the Pacific Basin long-term contracts (typically one year long) still play an important role, especially in the trade between Australia and Japan, Korea and Chinese Taipei, in which approximately half of the trade is made through long-term contracts, also shrinking as it used to be 90% one decade ago. Security of supply is highly valued by Japanese Power Utilities (JPUs), and so too, the quality and consistency of Australian coal. Therefore, JPUs prefer to ensure some volumes at fixed price, although liberalisation of Japanese electricity market has pushed JPUs to diversify sources and to increase spot purchases. The most important contract is the one that Glencore and Tohoku sign for the Japanese fiscal year (April to March), as it is the benchmark for the industry. Whereas frequent in the domestic market, Chinese and Indian buyers are more reluctant to sign long-term contracts on imports.

3.2 Coking Coal

Since the 1960s until the end of the twentieth century, coking coal trade was very stable. On the demand side, the Japanese Steel Mills (JSMs), as Japan was the largest importer of coking coal, led the negotiations with the suppliers, and the other steel mills in the region, that is, Korea and Chinese Taipei followed agreements similar to the JSM ones, which procured their coking coal through long-term contracts. Japanese companies were pioneers investing in the producing regions, that is, Queensland in Australia and Elk Valley in Canada in the 1960s, and British Columbia in the 1970s. Long-term contracts and Japanese investment guaranteed supply and the power exerted by JSMs ensured that negotiated prices were as low as reasonably profitable for producers. In the 1990s, after some years of low prices, the supply side faced a dramatic change. Some companies left, the major miners entered and by the early 2000s BHP Billiton (currently BHP), Teck Resources, Xstrata (currently Glencore), Anglo American and Rio Tinto controlled more than half of the international trade, which shifted the balance of negotiation power from the buyers to the sellers. At the same time, new entrants from China and India with a different, more spot-oriented approach were also eroding the old system. By 2011, China was already importing almost as much coking coal (45 Mt) as Japan (50.6 Mt) and India (35 Mt) had surpassed Korea (32 Mt). In the fourth quarter of 2010, Queensland suffered heavy rains, which flooded mines, railways and ports, and strongly disrupted coal exports during the first quarter of 2011 from that region, the origin of more than half of the global coking coal exports. This, together with strong demand from China, gave rise to a spike price over $300/t in 2011. At that time, BHP, which had pushed contracts from annual to quarterly and then monthly benchmark against heavy resistance from JSMs, decided to go a step further and sell a great part of its production through index-linked spot sales. This movement shook the market, which has developed considerably since then. Currently the estimates are that more than 50% of Australian coking coal is sold in the spot market, with the rest through index-linked term contracts, which means that the long-standing benchmark set through bilateral negotiations between Australian producers and JSMs has vanished. The change in coking coal market has been very fast, considering that the first coking coal index was launched in 2010, but volatility of coking coal, which has been key for that movement, seems unavoidable. In the supply side, Queensland’s dominance plays an important role, as any disruption—usually weather-related—leads to an important price spike. In the demand side, China dominates coking coal demand—with more than half of the global demand—and imports are only a small fraction of its domestic consumption, and therefore, policy changes in China have strong implications for the international markets.

4 Derivatives and Market Liquidity

Due to the wide range of coal quality and properties, coal commoditisation was traditionally considered more difficult than other commodities. However, the liberalisation of the electricity markets in Europe and the search of hedging tools by the utilities triggered the development of paper markets. The first coal swaps emerged in 1998, and given the interest of European utilities, API2 and API4 were the underlying asset. In 2002, Central Appalachian’s first coal futures were traded in NYMEX. Others followed, based on API5, API8 and ICI4. It took some years to develop a liquid derivative market, but the volume probably crossed the 1 bt threshold in 2006, and one year later, the API2-based trade. Most of that trade was in OTCs until 2010, and therefore, volumes are difficult to estimate with accuracy. API2-based swaps and futures have concentrated the majority of the paper trade, around 80%, despite physical volumes in ARA hub have a much lower share. Owing to its higher liquidity, API2 derivatives have been used as a proxy for other coals. With some ups and downs due to the financial conditions, coal derivatives were growing for more than 15 years. In 2016, more than 4 bt of coal derivatives were traded. The unexpected reverse of the market during 2016 put many into red. Some large trading houses left coal trade, and coal paper trade is declining since then. Given the expected collapse of European coal demand, how liquidity on API2-based derivatives will evolve is an open question.

By contrast, in China the paper market continues to grow. The first swaps based on Chinese coal emerged in 2011. In September 2013, the Zhenghou Commodity Exchange launched the first derivatives in China based on thermal coal. In August 2014, the Shanghai Commodity Exchange launched its first thermal coal swaps. Since then, volumes have continuously increased and now paper trade in China is larger than the paper trade in the rest of the world combined.

In the coking coal market, the increasing use of index-linked spot and contract trades has encouraged development of hedging strategies. First coking coal derivatives were launched in 2011, and after some years of muted activity, volumes grew dramatically, probably also boosted by cyclone Debbie-induced volatility, in 2016. In March 2013, the Dalian Commodity Exchange launched the first derivatives for coking coal in China, and the market has been growing since then, trading billions tonnes per year.

5 Notes

  • All the data and information have been obtained from IEA publications, in particular the Medium-term Coal Market report 2011–2019 (re-branded as Coal Report in 2018), and IEA databases.

  • The data in this chapter generally refer to 2019. In the cases in which 2019 data are not available, 2018 data have been used instead.