Skip to main content

Advances in Self-healing Bituminous Materials: From Concept to Large-Scale Application

  • Chapter
  • First Online:
Self-Healing Construction Materials

Abstract

This chapter provides a comprehensive summary of the significant advances in self-healing bituminous materials from the engineering technologies associated with promoting the autonomous healing capability in the asphalt pavements to the large-scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Read J, Whiteoak D (2003) The shell bitumen handbook, 5th ed. Thomas Telford Ltd

    Google Scholar 

  2. Harmelink D, Shuler S, Aschenbrener T (2008) Top-down cracking in asphalt pavements: causes, effects, and cures. J Transp Eng 134(1)

    Google Scholar 

  3. Garcia A (2012) Self-healing of open cracks in asphalt mastic. Fuel 93:264–272

    Article  Google Scholar 

  4. Qiu J (2012) Self healing of asphalt mixtures. PhD thesis. Delft University of Technology, The Netherlands

    Google Scholar 

  5. Liu Q, Schlangen E, van de Ven M (2013) Induction healing of porous asphalt concrete beams on an elastic foundation. J Mater Civ Eng 25(7):880–885

    Article  Google Scholar 

  6. García A, Schlangen E, van de Ven M, Liu Q (2009) Electrical conductivity of asphalt mortar with conductive fibers and fillers. Constr Build Mater 23:3175–3181

    Article  Google Scholar 

  7. García A, Schlangen E, van de Ven M, van Vliet D (2010) Induction heating of mastic containing conductive fibers and fillers. Mater Struct 44:499–508

    Article  Google Scholar 

  8. Liu Q, Schlangen E, van de Ven M, García A (2010) Induction healing of electrically conductive porous asphalt concrete. Constr Build Mater 24:1207–1213

    Article  Google Scholar 

  9. Dai Q, Wang Z, Hasan M (2013) Investigation of induction healing effects on electrically conductive asphalt mastic and asphalt concrete beams through fracture-healing tests. Constr Build Mater 49:729–737

    Article  Google Scholar 

  10. Tang J, Liu Q, Wu S, Ye Q, Sun Y (2016) Investigation of the optimal self-healing temperatures and healing time of asphalt binders. Constr Build Mater 113:1029–1033

    Article  Google Scholar 

  11. García A, Schlangen E, van de Ven M, Liu Q (2012) A simple model to define induction heating in asphalt mastic. Constr Build Mater 31:38–46

    Article  Google Scholar 

  12. Li B (2018) Induction heating and healing characteristics of asphalt mixture. Master thesis. Wuhan University of Technology, China

    Google Scholar 

  13. Liu Q, Li B, Schlangen E, Sun Y, Wu S (2017) Research on the mechanical, thermal, induction heating and healing properties of steel slag/steel fibers composite asphalt mixture. Appl Sci-Basel 7:1088

    Article  Google Scholar 

  14. Liu Q, Yu W, Wu SP, Schlangen E, Pan P (2017) A comparative study of the induction healing behaviors of hot and warm mix asphalt. Constr Build Mater 144:663–670

    Article  Google Scholar 

  15. Liu Q, Chen C, Li B, Sun Y, Li H (2018) Heating characteristics and induced healing efficiencies of asphalt mixture via induction and microwave heating. Materials 11(6):913

    Article  Google Scholar 

  16. Liu Q, Schlangen E, van de Ven M (2012) Evaluation of the induction healing effect of porous asphalt concrete through four-point bending fatigue test. Constr Build Mater 29:403–409

    Article  Google Scholar 

  17. NL Agency Ministry of Economic Affairs, Agriculture and Innovation of the Netherlands (2011) Self healing Materials: concept and applications, 2nd ed

    Google Scholar 

  18. Partl MN (2018) Introduction. RILEM state-of-the-art reports. In: Partl MN, Porot L, Di Benedetto H, Canestrari F, Marsac P, Tebaldi G (eds) Testing and characterization of sustainable innovative bituminous materials and systems, vol 24, pp 1–14. Springer, Cham

    Google Scholar 

  19. Agzenai Y, Pozuelo J, Sanz J, Perez I, Baselga J (2015) Advanced self-healing asphalt composites in the pavement performance field: mechanisms at the nano level and new repairing methodologies. Recent Pat Nanotechnol 9(1):43–50

    Article  Google Scholar 

  20. Santagata E, Baglieri O, Tsantilis L, Chiappinelli G (2015) Fatigue and healing properties of nano-reinforced bituminous binders. Int J Fatigue 80:30–39

    Article  Google Scholar 

  21. Shi H, Magaye R, Castranova V, Zhao J (2013) Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 10(15):1–33

    Google Scholar 

  22. Begani AZ, Begani RK (2018) Is exposure to titanium dioxide nanoparticle associated with occupational lung cancer among titanium dioxide production workers? An emerging issue. Ann Occup Environ Med 6(2):50–61

    Google Scholar 

  23. Chernova T, Murphy FA, Galavotti S, Sun X-M, Powley IR, Grosso S, Schinwald A, Zacarias-Cabeza J, Dudek KM, Dinsdale D, Quesne JL, Bennett J, Nakas A, Greaves P, Poland CA, Donaldson K, Bushell M, Willis AE, MacFarlane M (2017) Long-fiber carbon nanotubes replicate asbestos-induced mesothelioma with disruption of the tumor suppressor gene Cdkn2a (Ink4a/Arf). Curr Biol 27(21):3302–3314

    Article  Google Scholar 

  24. Qiu J, van de Ven MFC, Wu S, Yu J, Molenaar AAA (2009) Investigating the self healing capability of bituminous binders. Road Mater Pavement 10(1):81–94

    Article  Google Scholar 

  25. Tabatabaee N, Shafiee MH (2012) Effect of organoclay modified binders on fatigue performance. In: 7th RILEM international conference on cracking in pavements. RILEM Bookseries, vol 4, pp 869–878. Springer, Dordrecht

    Google Scholar 

  26. Fang C, Yu R, Liu S, Li Y (2013) Nanomaterials applied in asphalt modification: a review. J Mater Sci Technol 29(7):589–594

    Article  Google Scholar 

  27. Jeoffroy E, Koulialias D, Yoon S, Partl M, Studart A (2016) Iron oxide nanoparticles for magnetically-triggered healing of bituminous materials. Constr Build Mater 112:497–505

    Article  Google Scholar 

  28. Santagata E, Baglieri O, Tsantilis L, Dalmazzo D, Chiappinelli G (2016) Fatigue and healing properties of bituminous mastics reinforced with nano-sized additives. Mech Time-Depend Mater 20:367–387

    Article  Google Scholar 

  29. Wang YY, Su JF, Schlangen E, Han NX, Han S, Li W (2016) Fabrication and characterization of self-healing microcapsules containing bituminous rejuvenator by a nano-inorganic/organic hybrid method. Constr Build Mater 121:471–482

    Article  Google Scholar 

  30. Pérez I, Agzenai Y, Pozuelo J, Sanz J, Baselga J, García A, Pérez V (2016) Self-healing of asphalt mixes, containing conductive modified bitumen, using microwave heating. In: 6th Eurasphalt & Eurobitume Congress, Prague

    Google Scholar 

  31. Ganjei MA, Aflaki E (2019) Application of nano-silica and styrene-butadiene-styrene to improve asphalt mixture self healing. Int J Pavement Eng 20(1):89–99

    Article  Google Scholar 

  32. Wang Z, Dai Q, Guo S, Wang R, Ye M, Yap YK (2017) Experimental investigation of physical properties and accelerated sunlight-healing performance of flake graphite and exfoliated graphite nanoplatelet modified asphalt materials. Constr Build Mater 134:412–423

    Article  Google Scholar 

  33. Jeoffroy E, Bouville F, Bueno M, Studart A, Partl M (2018) Iron-based particles for the magnetically-triggered crack healing of bituminous materials. Constr Build Mater 164:775–782

    Article  Google Scholar 

  34. Yoo DY, Kim S, Kim M, Kim D, Shin H (2018) Self-healing capability of asphalt concrete with carbon-based materials. J Mater Res Technol 427

    Google Scholar 

  35. Li C, Wua S, Chen Z, Tao G, Xiao Y (2018) Improved microwave heating and healing properties of bitumen by using nanometer microwave-absorbers. Constr Build Mater 189:757–767

    Article  Google Scholar 

  36. Garcia A, Schlangen E, Ven M Van De (2010) Two ways of closing cracks on asphalt concrete pavements: microcapsules and induction heating. Key Eng Mater 573–576

    Google Scholar 

  37. Liu Q, García Á, Schlangen E, Van De VM (2011) Induction healing of asphalt mastic and porous asphalt concrete. Constr Build Mater 25:3746–3752

    Article  Google Scholar 

  38. Menozzi A, Garcia A, Partl MN, Tebaldi G, Schuetz P (2015) Induction healing of fatigue damage in asphalt test samples. Constr Build Mater 74:162–168

    Article  Google Scholar 

  39. Norambuena-Contreras J, Serpell R, Valdés G, Gonzalez A, Schlangen E (2016) Effect of fibres addition on the physical and mechanical properties of asphalt mixtures with crack-healing purposes by microwave radiation. Constr Build Mater 127:369–382

    Article  Google Scholar 

  40. Norambuena-Contreras J, Garcia A (2016) Self-healing of asphalt mixture by microwave and induction heating. Mater Des 106:404–414

    Article  Google Scholar 

  41. Von Hippel AR (1954) Dielectric materials and applications. Wiley, New York

    Google Scholar 

  42. Metaxas AC, Meredith RJ (1983) Industrial microwave heating. The Institution of Engineering and Technology, Herts, UK

    Google Scholar 

  43. Meredith RJ (1998) Engineer’s handbook of industrial microwave heating. The Institution of Electrical Engineers, London, UK

    Google Scholar 

  44. Jaselskis EJ, Grigas J, Brilingas A (2003) Dielectric properties of asphalt pavement. J Mater Civ Eng 15:427–434

    Article  Google Scholar 

  45. Gallego J, Del Val MA, Contreras V, Páez A (2013) Heating asphalt mixtures with microwaves to promote self-healing. Constr Build Mater 42:1–4

    Article  Google Scholar 

  46. García A, Norambuena-Contreras J, Pacheco-Bueno M, Partl MN (2015) Single and multiple healing of porous and dense asphalt concrete. J Intell Mater Syst Struct 26:425–433

    Article  Google Scholar 

  47. Norambuena-Contreras J, Gonzalez-Torre I (2017) Influence of the microwave heating time on the self-healing properties of asphalt mixtures. Appl Sci 7:1076

    Article  Google Scholar 

  48. Franesqui MA, Yepes J, García-González C (2017) Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves. Constr Build Mater 149:612–620

    Article  Google Scholar 

  49. González A, Norambuena-Contreras J, Storey L, Schlangen E (2018) Effect of RAP and fibers addition on asphalt mixtures with self-healing properties gained by microwave radiation heating. Constr Build Mater 159:164–174

    Article  Google Scholar 

  50. Abreu LPF, Oliveira JRM, Silva HMRD, Fonseca PV (2015) Recycled asphalt mixtures produced with high percentage of different waste materials. Constr Build Mater 84:230–238

    Article  Google Scholar 

  51. Arabani M, Tahami SA (2017) Assessment of mechanical properties of rice husk ash modified asphalt mixture. Constr Build Mater 149:350–358

    Article  Google Scholar 

  52. Poulikakos LD, Papadaskalopoulou C, Hofko B, Gschösser F, Cannone FA, Bueno M, Arraigada M, Sousa J, Ruiz R, Petit C, Loizidou M, Partl MN (2017) Harvesting the unexplored potential of European waste materials for road construction. Resour Conserv Recycl 116:32–44

    Article  Google Scholar 

  53. Sun D, Sun G, Du Y, Zhu X, Lu T, Pang Q, Shi S, Dai Z (2017) Evaluation of optimized bio-asphalt containing high content waste cooking oil residues. Fuel 202:529–540

    Article  Google Scholar 

  54. García A, Pacheco-Bueno M, Norambuena-Contreras J, Partl MN (2013) Induction healing of dense asphalt concrete. Constr Build Mater 49:1–7

    Article  Google Scholar 

  55. González A, Valderrama J, Norambuena-Contreras J (2019) Microwave crack healing on conventional and modified asphalt mixtures with different additives: an experimental approach. Road Mater Pavement Des 1–14

    Google Scholar 

  56. Karimi MM, Jahanbakhsh H, Jahangiri B, Moghadas NF (2018) Induced heating-healing characterization of activated carbon modified asphalt concrete under microwave radiation. Constr Build Mater 178:254–271

    Article  Google Scholar 

  57. Norambuena-Contreras J, Gonzalez A, Concha JL, Gonzalez-Torre I, Schlangen E (2018) Effect of metallic waste addition on the electrical, thermophysical and microwave crack-healing properties of asphalt mixtures. Constr Build Mater 187:1039–1050

    Article  Google Scholar 

  58. González A, Norambuena-Contreras J, Storey L, Schlangen E (2018) Self-healing properties of recycled asphalt mixtures containing metal waste: an approach through microwave radiation heating. J Environ Manage 214

    Google Scholar 

  59. Zhu X, Ye F, Cai Y, Birgisson B, Lee K (2019) Self-healing properties of ferrite- filled open-graded friction course (OGFC) asphalt mixture after moisture damage. J Clean Prod 232:518–530

    Article  Google Scholar 

  60. Sun Y, Wu S, Liu Q, Zeng W, Chen Z, Ye Q, Pan P (2017) Self-healing performance of asphalt mixtures through heating fibers or aggregate. Constr Build Mater 150:673–680

    Article  Google Scholar 

  61. Zhang B, Li J, Sun J, Zhang S, Zhai H, Du Z (2002) Nanometer silicon carbide powder synthesis and its dielectric behavior in the GHz range. J Eur Ceram Soc 22:93–99

    Article  Google Scholar 

  62. Garcia A, Jelfs J, Austin CJ (2015) Internal asphalt mixture rejuvenation using capsules. Constr Build Mater 101:309–316

    Article  Google Scholar 

  63. Al-Mansoori T, Norambuena-Contreras J, Micaelo R, Garcia A (2018) Self-healing of asphalt mastic by the action of polymeric capsules containing rejuvenators. Constr Build Mater 161:330–339

    Article  Google Scholar 

  64. Garcia A, Schlangen E, van de Ven M, Sierra-Beltran G (2010) Preparation of capsules containing rejuvenators for their use in asphalt concrete. J Hazard Mater 184(1–3):603–611

    Article  Google Scholar 

  65. Garcia A, Schlangen E, van de Ven M (2010) Properties of capsules containing rejuvenators for their use in asphalt concrete. Fuel 90(2):583–591

    Article  Google Scholar 

  66. Garcia A, Austin CJ, Jelfs J (2016) Mechanical properties of asphalt mixture containing sunflower oil capsules. J Clean Prod 118:124–132

    Article  Google Scholar 

  67. Su J, Qiu J, Schlangen E (2013) Stability investigation of self-healing microcapsules containing rejuvenator for bitumen. Polym Degrad Stabil 98:1205–1215

    Article  Google Scholar 

  68. Su JF, Qiu J, Schlangen E, Wang Y (2014) Experimental investigation of self-healing behaviour of bitumen/microcapsule composites by a modified beam on elastic foundation method. Mater Struct 1–10

    Google Scholar 

  69. Yang P, Han S, Su J, Wang YY, Zhang XL, Han NX, Li W (2017) Design of self‐healing microcapsules containing bituminous rejuvenator with nano-CaCO3/organic composite shell: mechanical properties, thermal stability, and compactability. Polym Composite 39

    Google Scholar 

  70. Tabakovic A, Post W, Garcia S, Schlangen E (2016) Compartmented alginate fibres as a healing agent (rejuvenator) delivery system and reinforcement for asphalt pavements. In: Eighth international conference on maintenance and rehabilitation of pavements

    Google Scholar 

  71. Aguirre MA, Hassan M, Shirzad S, Cooper Jr S, Negulescu I, Mohammad LN (2018) Evaluation of hollow-fibers encapsulating a rejuvenator in asphalt binder with recycled asphalt shingles. In: Transportation research board 97th annual meeting transportation research board

    Google Scholar 

  72. Tabaković A, Braak D, van Gerwen M, Copuroglu O, Post W, Garcia S, Schlangen S (2017) The compartmented alginate fibres optimisation for bitumen rejuvenator encapsulation. J Traffic Transp Eng 4:347–359

    Google Scholar 

  73. Norambuena-Contreras J, Yalçin E, Garcia A, Al-Mansoori T, Yilmaz M, Hudson-Griffiths R (2018) Effect of mixing and ageing on the mechanical and self-healing properties of asphalt mixtures containing polymeric capsules. Constr Build Mater 175:254–266

    Article  Google Scholar 

  74. Al-Mansoori T, Micaelo R, Artamendi I, Norambuena-Contreras J, Garcia A (2017) Microcapsules for self-healing of asphalt mixture without compromising mechanical performance. Constr Build Mater 155:1091–1100

    Article  Google Scholar 

  75. Norambuena-Contreras J, Yalcin E, Hudson-Griffiths R, Garcia A (2019) Mechanical and self-healing properties of Stone Mastic Asphalt containing encapsulated rejuvenators. J Mat Civil Eng 31(5):04019052

    Article  Google Scholar 

  76. Al-Mansoori T, Norambuena-Contreras J, Garcia A (2018) Effect of capsule addition and healing temperature on the self-healing potential of asphalt mixtures. Mater Struct 51:53

    Article  Google Scholar 

  77. Norambuena-Contreras J, Liu Q, Zhang L, Wu S, Yalcin E, Garcia A (2019) Influence of encapsulated sunflower oil on the mechanical and self-healing properties of dense-graded asphalt mixtures. Mater Struct 52:78

    Article  Google Scholar 

  78. Tabakovic A, Schlangen E (2018) Self-healing asphalt for road pavements. In: 4th International conference on service life design for infrastructures (SLD4). Delft University of Technology, Delft, The Netherlands

    Google Scholar 

  79. Mercadé-Prieto R, Zhang Z (2012) Mechanical characterization of microspheres, capsules, cells and beads: a review. J Microencapsul 29(3):277–285

    Article  Google Scholar 

  80. Walter J, Salsac AV, Barthes-Biesel D, Le Tallec P (2010) Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. Int J Numer Meth Eng 83:829–850

    Article  MathSciNet  MATH  Google Scholar 

  81. Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. Comp Animat Virt W 15(3–4):159–171

    Article  Google Scholar 

  82. Alexiadis A (2015) The discrete multi-hybrid system for the simulation of solid-liquid flows. PLoS ONE 10(5):1–26

    Article  Google Scholar 

  83. Ariane M, Wen W, Vigolo D, Brill A, Nash FGB, Barigou M, Alexiadis A (2017) Modelling and simulation of flow and agglomeration in deep veins valves using discrete multi physics. Comput Biol Med 89:96–103

    Article  Google Scholar 

  84. Wu K, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161

    Article  Google Scholar 

  85. Ariane M, Vigolo D, Brill A, Nash FGB, Barigou M, Alexiadis A (2018) Using discrete multi-physics for studying the dynamics of emboli in flexible venous valves. Comput Fluids 166:57–63

    Article  MathSciNet  MATH  Google Scholar 

  86. Van Liedekerke P, Tijskens E, Ramon H, Ghysels P, Samaey G, Roose D (2010) Particle-based model to simulate the micromechanics of biological cells. Phy Rev E Stat, Nonlin Soft Matter Phys. 81(6):1–15

    Google Scholar 

  87. Wacker B, Kalantari M, Beatens B, Bochove van G (2018) HEALROAD - D5.2: induction heating asphalt mixes to increase road durability and reduce maintenance costs and disruptions - Evaluation of accelerated pavement test and analysis of structural changes

    Google Scholar 

  88. Gomez-Meijide B, Bianca Baetens B, van Bochove GG, Castro D, Garcia A, Indacoechea I, Lastra-Gonzalez P, Lizasoain E, Bastian Wacker B (2018) HEALROAD Project: laboratory optimisation and on-site validation of induction healing asphalt. In: 72nd RILEM annual week and 4th international conference on service life design for infrastructures (SLD4), Delft, The Netherlands

    Google Scholar 

  89. Steyn WJ (2012) NCHRP Synthesis 433: significant findings from full-scale accelerated pavement testing, Washington D.C.: Transport Research Board

    Google Scholar 

  90. Xu S, García A, Su J, Liu Q, Tabaković A, Schlangen E (2018) Self-healing asphalt review: from idea to practice. Adv Mater Interfaces 5(17), art. no.1800536

    Google Scholar 

Download references

Acknowledgements

Jose Norambuena-Contreras want to thank the funding given by the National Research and Development Agency (ANID) from the Chilean Ministry of Science, Technology, Knowledge and Innovation, through the Research Project FONDECYT Regular 2019 No. 1190027. Nilo Ruiz-Riancho thanks the project H2020-MSCA-ITN-2016 which has received funding from the EU’s H2020 Programme for research, technological development and demonstration under grant agreement number 721493. Bastian Wacker would like to acknowledge the Infravation Project (an ERA-NET Plus on Infrastructure Innovation) under the grant agreement no. 31109806.0003—HEALROAD. Jose L. Concha wishes to thank the financial support given by the University of Bío-Bío for his internal PhD scholarship granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Norambuena-Contreras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Norambuena-Contreras, J. et al. (2022). Advances in Self-healing Bituminous Materials: From Concept to Large-Scale Application. In: Kanellopoulos, A., Norambuena-Contreras, J. (eds) Self-Healing Construction Materials. Engineering Materials and Processes. Springer, Cham. https://doi.org/10.1007/978-3-030-86880-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86880-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86879-6

  • Online ISBN: 978-3-030-86880-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics