Skip to main content

Part of the book series: Cultural Heritage Science ((CUHESC))

  • 728 Accesses

Abstract

Raman spectroscopy is one of the most favorable techniques applied in the art analysis field. Its unique characteristics, namely the organic and inorganic components identification, spatial resolution down to micrometers scale, control of the laser power and measuring conditions and fast identification are just some of the remarkable features of the technique. Moreover, Raman spectroscopy can be applied directly on the artefact and on the field, with mobile systems, without jeopardizing the integrity of the work of art. Other Raman approaches can be considered namely, microspatially offset Raman spectroscopy (micro-SORS) and surface-enhanced Raman spectroscopy (SERS) when it comes to the direct non-destructive stratigraphic analysis of art works and the characterization of organic compounds such as dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, N.R., Tommasini, M., Fazio, E., Neri, F., Ponterio, R.C., Trusso, S., et al.: SERS activity of silver and gold nanostructured thin films deposited by pulsed laser ablation. Appl. Phys. A Mater. Sci. Process. 117, 347–351 (2014). https://doi.org/10.1007/s00339-014-8401-8

    Article  Google Scholar 

  • Angelin, E.M., França de Sá, S., Picollo, M., Nevin, A., Callapez, M.E., Melo, M.J.: The identification of synthetic organic red pigments in historical plastics: developing an in situ analytical protocol based on Raman microscopy. J. Raman Spectrosc. 52, 145–158 (2021). https://doi.org/10.1002/jrs.5985

    Article  Google Scholar 

  • Baran, A., Fiedler, A., Schulz, H., Baranska, M.: In situ Raman and IR spectroscopic analysis of indigo dye. Anal. Methods. 2, 1372 (2010). https://doi.org/10.1039/c0ay00311e

    Article  Google Scholar 

  • Bell, I.M., Clark, R.J.H., Gibbs, P.J.: Raman spectroscopic library of natural and synthetic pigments (pre-≈ 1850 AD). Spectrochim. Acta A Mol. Biomol. Spectrosc. 53(12), 2159–2179 (1997)

    Article  Google Scholar 

  • Benedetti, D.P., Zhang, J., Tague, T.J., Lombardi, J.R., Leona, M.: In situ microanalysis of organic colorants by inkjet colloid deposition surface-enhanced Raman scattering. J. Raman Spectrosc. 45, 123–127 (2014). https://doi.org/10.1002/jrs.4424

    Article  Google Scholar 

  • Benquerença, M.-J., Mendes, N.F.C., Castellucci, E., Gaspar, V.M.F., Gil, F.P.S.C.: Micro-Raman spectroscopy analysis of 16th century Portuguese Ferreirim Masters oil paintings. J. Raman Spectrosc. 40, 2135–2143 (2009). https://doi.org/10.1002/jrs.2383

    Article  Google Scholar 

  • Bersani, D., Lottici, P.P.: Raman spectroscopy of minerals and mineral pigments in archaeometry. J. Raman Spectrosc. 47, 499–530 (2016). https://doi.org/10.1002/jrs.4914

    Article  Google Scholar 

  • Bersani, D., Conti, C., Matousek, P., Pozzi, F., Vandenabeele, P.: Methodological evolutions of Raman spectroscopy in art and archaeology. Anal. Methods. 8, 8395–8409 (2016). https://doi.org/10.1039/C6AY02327D

    Article  Google Scholar 

  • Best, S.P., Clark, R.J., Withnall, R.: Non-destructive pigment analysis of artefacts by Raman microscopy. Endeavour. 16, 66–73 (1992). https://doi.org/10.1016/0160-9327(92)90004-9

    Article  Google Scholar 

  • Bosi, A., Ciccola, A., Serafini, I., Guiso, M., Ripanti, F., Postorino, P., et al.: Street art graffiti: discovering their composition and alteration by FTIR and micro-Raman spectroscopy. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 225, 117474 (2020). https://doi.org/10.1016/j.saa.2019.117474

    Article  Google Scholar 

  • Botteon, A., Conti, C., Realini, M., Colombo, C., Matousek, P.: Discovering hidden painted images: subsurface imaging using microscale spatially offset Raman spectroscopy. Anal. Chem. 89, 792–798 (2017). https://doi.org/10.1021/acs.analchem.6b03548

    Article  Google Scholar 

  • Botteon, A., Colombo, C., Realini, M., Bracci, S., Magrini, D., Matousek, P., et al.: Exploring street art paintings by microspatially offset Raman spectroscopy. J. Raman Spectrosc. 49, 1652–1659 (2018). https://doi.org/10.1002/jrs.5445

    Article  Google Scholar 

  • Botteon, A., Colombo, C., Realini, M., Castiglioni, C., Piccirillo, A., Matousek, P., et al.: Non-invasive and in situ investigation of layers sequence in panel paintings by portable micro-spatially offset Raman spectroscopy. J. Raman Spectrosc. 51, 2016–2021 (2020a). https://doi.org/10.1002/jrs.5939

    Article  Google Scholar 

  • Botteon, A., Yiming, J., Prati, S., Sciutto, G., Realini, M., Colombo, C., et al.: Non-invasive characterisation of molecular diffusion of agent into turbid matrix using micro-SORS. Talanta. 218, 121078 (2020b). https://doi.org/10.1016/j.talanta.2020.121078

    Article  Google Scholar 

  • Brown, S., Clark, R.J.H.: Anatase: Important industrial white pigment and date-marker for artwork. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 110, 78–80 (2013). https://doi.org/10.1016/j.saa.2013.03.041

    Article  Google Scholar 

  • Bruni, S., Guglielmi, V., Pozzi, F., Mercuri, A.M.: Surface-enhanced Raman spectroscopy (SERS) on silver colloids for the identification of ancient textile dyes. Part II: pomegranate and sumac. J. Raman Spectrosc. 42, 465–473 (2011). https://doi.org/10.1002/jrs.2736

    Article  Google Scholar 

  • Buckley, K., Atkins, C.G., Chen, D., Schulze, H.G., Devine, D.V., Blades, M.W., et al.: Non-invasive spectroscopy of transfusable red blood cells stored inside sealed plastic blood-bags. Analyst. 141, 1678–1685 (2016). https://doi.org/10.1039/C5AN02461G

    Article  Google Scholar 

  • Burgio, L., Clark, R.J.H.: Library of FT-Raman spectra of pigments, minerals, pigment media and varnishes, and supplement to existing library of Raman spectra of pigments with visible excitation. Spectrochim. Acta A Mol. Biomol. Spectrosc. 57(7), 1491–1521 (2001)

    Article  Google Scholar 

  • Burrafato, G., Calabrese, M., Cosentino, A., Gueli, A.M., Troja, S.O., Zuccarello, A.: ColoRaman project: Raman and fluorescence spectroscopy of oil, tempera and fresco paint pigments. J. Raman Spectrosc. 35(10), 879–886 (2004)

    Article  Google Scholar 

  • Campanella, B., Botti, J., Cavaleri, T., Cicogna, F., Legnaioli, S., Pagnotta, S., et al.: The shining brightness of daylight fluorescent pigments: Raman and SERS study of a modern class of painting materials. Microchem. J. 152, 104292 (2020). https://doi.org/10.1016/j.microc.2019.104292

    Article  Google Scholar 

  • Cañamares, M.V., Garcia-Ramos, J.V., Domingo, C., Sanchez-Cortes, S.: Surface-enhanced Raman scattering study of the anthraquinone red pigment carminic acid. Vib. Spectrosc. 40, 161–167 (2006). https://doi.org/10.1016/j.vibspec.2005.08.002

    Article  Google Scholar 

  • Cañamares, M.V., Leona, M., Bouchard, M., Grzywacz, C.M., Wouters, J., Trentelman, K.: Evaluation of Raman and SERS analytical protocols in the analysis of Cape Jasmine dye ( Gardenia augusta L.). J. Raman Spectrosc. 41 (2009). https://doi.org/10.1002/jrs.2462

  • Casadio, F., Leona, M., Lombardi, J.R., Van Duyne, R.: Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. Acc. Chem. Res. 43, 782–791 (2010). https://doi.org/10.1021/ar100019q

    Article  Google Scholar 

  • Casadio, F., Daher, C., Bellot-Gurlet, L.: Raman spectroscopy of cultural heritage materials: overview of applications and new frontiers in instrumentation, sampling modalities, and data processing. Top. Curr. Chem. 374, 62 (2016). https://doi.org/10.1007/s41061-016-0061-z

    Article  Google Scholar 

  • Cesaratto, A., Leona, M., Lombardi, J.R., Comelli, D., Nevin, A., Londero, P.: Detection of organic colorants in historical painting layers using UV laser ablation surface-enhanced Raman microspectroscopy. Angew. Chem. Int. Ed. 53, 14373–14377 (2014). https://doi.org/10.1002/anie.201408016

    Article  Google Scholar 

  • Castro, K., Pérez-Alonso, M., Rodríguez-Laso, M.D., Fernández, L.A., Madariaga, J.M.: On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal. Bioanal. Chem. 382(2), 248–258 (2005)

    Article  Google Scholar 

  • Chen, K., Leona, M., Vo-Dinh, K.-C., Yan, F., Wabuyele, M.B., Vo-Dinh, T.: Application of surface-enhanced Raman scattering (SERS) for the identification of anthraquinone dyes used in works of art. J. Raman Spectrosc. 37, 520–527 (2006). https://doi.org/10.1002/jrs.1426

    Article  Google Scholar 

  • Cialla-May, D., Schmitt, M., Popp, J.: Theoretical principles of Raman spectroscopy. Phys Sci Rev. 4, 20170040 (n.d.). https://doi.org/10.1515/psr-2017-0040

  • Clark, R.J.: Pigment identification on medieval manuscripts by Raman microscopy. J. Mol. Struct. 347, 417–427 (1995a). https://doi.org/10.1016/0022-2860(95)08564-C

    Article  Google Scholar 

  • Clark, R.J.H.: Raman microscopy: application to the identification of pigments on medieval manuscripts. Chem. Soc. Rev. 24, 187 (1995b). https://doi.org/10.1039/cs9952400187

    Article  Google Scholar 

  • Clark, R.J.H., Franks, M.L.: The resonance Raman spectrum of ultramarine blue. Chem. Phys. Lett. 34, 69–72 (1975). https://doi.org/10.1016/0009-2614(75)80202-8

    Article  Google Scholar 

  • Coccato, A., Jehlicka, J., Moens, L., Vandenabeele, P.: Raman spectroscopy for the investigation of carbon–based black pigments. J. Raman Spectrosc. 46(10), 1003–1015 (2015)

    Article  Google Scholar 

  • Coccato, A., Bersani, D., Coudray, A., Sanyova, J., Moens, L., Vandenabeele, P.: Raman spectroscopy of green minerals and reaction products with an application in cultural heritage research. J. Raman Spectrosc. 47(12), 1429–1443 (2016)

    Article  Google Scholar 

  • Colomban, P.: Polymerization degree and Raman identification of ancient glasses used for jewelry, ceramic enamels and mosaics. J. Non-Cryst. Solids. 323, 180–187 (2003a). https://doi.org/10.1016/S0022-3093(03)00303-X

    Article  Google Scholar 

  • Colomban, P.: Lapis lazuli as unexpected blue pigment in Iranian Lâjvardina ceramics. J. Raman Spectrosc. 34, 420–423 (2003b). https://doi.org/10.1002/jrs.1014

    Article  Google Scholar 

  • Colomban, P.: The on-site/remote Raman analysis with mobile instruments: a review of drawbacks and success in cultural heritage studies and other associated fields. J. Raman Spectrosc. 43, 1529–1535 (2012). https://doi.org/10.1002/jrs.4042

    Article  Google Scholar 

  • Colomban, P., Tournie, A., Bellot-Gurlet, L.: Raman identification of glassy silicates used in ceramics, glass and jewellery: a tentative differentiation guide. J. Raman Spectrosc. 37, 841–852 (2006). https://doi.org/10.1002/jrs.1515

    Article  Google Scholar 

  • Conti, C., Colombo, C., Realini, M., Zerbi, G., Matousek, P.: Subsurface Raman analysis of thin painted layers. Appl. Spectrosc. 68, 686–691 (2014). https://doi.org/10.1366/13-07376

    Article  Google Scholar 

  • Conti, C., Colombo, C., Realini, M., Matousek, P.: Subsurface analysis of painted sculptures and plasters using micrometre-scale spatially offset Raman spectroscopy (micro-SORS). J. Raman Spectrosc. 46, 476–482 (2015a). https://doi.org/10.1002/jrs.4673

    Article  Google Scholar 

  • Conti, C., Realini, M., Colombo, C., Sowoidnich, K., Afseth, N.K., Bertasa, M., et al.: Noninvasive analysis of thin turbid layers using microscale spatially offset Raman spectroscopy. Anal. Chem. 87, 5810–5815 (2015b). https://doi.org/10.1021/acs.analchem.5b01080

    Article  Google Scholar 

  • Conti, C., Realini, M., Colombo, C., Matousek, P.: Comparison of key modalities of micro-scale spatially offset Raman spectroscopy. Analyst. 140, 8127–8133 (2015c). https://doi.org/10.1039/C5AN01900A

    Article  Google Scholar 

  • Conti, C., Botteon, A., Bertasa, M., Colombo, C., Realini, M., Sali, D.: Portable sequentially shifted excitation Raman spectroscopy as an innovative tool for in situ chemical interrogation of painted surfaces. Analyst. 141, 4599–4607 (2016a). https://doi.org/10.1039/C6AN00753H

    Article  Google Scholar 

  • Conti, C., Botteon, A., Colombo, C., Realini, M., Matousek, P.: Fluorescence suppression using micro-scale spatially offset Raman spectroscopy. Analyst. 141, 5374–5381 (2016b). https://doi.org/10.1039/C6AN00852F

    Article  Google Scholar 

  • Conti, C., Realini, M., Botteon, A., Colombo, C., Noll, S., Elliott, S.R., et al.: Analytical capability of defocused μ-SORS in the chemical interrogation of thin turbid painted layers. Appl. Spectrosc. 70, 156–161 (2016c). https://doi.org/10.1177/0003702815615345

    Article  Google Scholar 

  • Conti, C., Realini, M., Colombo, C., Botteon, A., Bertasa, M., Striova, J., et al.: Determination of thickness of thin turbid painted over-layers using micro-scale spatially offset Raman spectroscopy. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20160049 (2016d). https://doi.org/10.1098/rsta.2016.0049

    Article  Google Scholar 

  • Conti, C., Realini, M., Colombo, C., Botteon, A., Matousek, P.: Contrasting confocal with defocusing microscale spatially offset Raman spectroscopy. J. Raman Spectrosc. 47, 565–570 (2016e). https://doi.org/10.1002/jrs.4851

    Article  Google Scholar 

  • Conti, C., Botteon, A., Colombo, C., Realini, M., Matousek, P.: Investigation of heterogeneous painted systems by micro-spatially offset Raman spectroscopy. Anal. Chem. 89, 11476–11483 (2017). https://doi.org/10.1021/acs.analchem.7b02700

    Article  Google Scholar 

  • Conti, C., Botteon, A., Colombo, C., Realini, M., Matousek, P., Vandenabeele, P., et al.: Contrasting confocal XRF with micro-SORS: a deep view within micrometric painted stratigraphy. Anal. Methods. 10, 3837–3844 (2018). https://doi.org/10.1039/C8AY00957K

    Article  Google Scholar 

  • Conti, C., Botteon, A., Colombo, C., Pinna, D., Realini, M., Matousek, P.: Advances in Raman spectroscopy for the non-destructive subsurface analysis of artworks: micro-SORS. J. Cult. Herit. 43, 319–328 (2020). https://doi.org/10.1016/j.culher.2019.12.003

    Article  Google Scholar 

  • Cooper, J.B., Abdelkader, M., Wise, K.L.: Sequentially shifted excitation Raman spectroscopy: Novel algorithm and instrumentation for fluorescence-free Raman spectroscopy in spectral space. Appl. Spectrosc. 67, 973–984 (2013)

    Article  Google Scholar 

  • Costantini, I., Lottici, P.P., Bersani, D., Pontiroli, D., Casoli, A., Castro, K., et al.: Darkening of lead- and iron-based pigments on late Gothic Italian wall paintings: energy dispersive X-ray fluorescence, μ-Raman, and powder X-ray diffraction analyses for diagnosis: presence of β-PbO 2 (plattnerite) and α-PbO 2 (scrutinyite). J. Raman Spectrosc. 51, 680–692 (2020). https://doi.org/10.1002/jrs.5817

    Article  Google Scholar 

  • Cucci, C., Bartolozzi, G., De Vita, M., Marchiafava, V., Picollo, M., Casadio, F.: The colors of Keith Haring: a spectroscopic study on the materials of the mural painting Tuttomondo and on reference contemporary outdoor paints. Appl. Spectrosc. 70, 186–196 (2016). https://doi.org/10.1177/0003702815615346

    Article  Google Scholar 

  • Daher, C., Paris, C., Le Hô, A.S., Bellot-Gurlet, L., Échard, J.P.: A joint use of Raman and infrared spectroscopies for the identification of natural organic media used in ancient varnishes. J. Raman Spectrosc. 41(11), 1494–1499 (2010)

    Article  Google Scholar 

  • De Gelder, J., De Gussem, K., Vandenabeele, P., Moens, L.: Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38(9), 1133–1147 (2007)

    Article  Google Scholar 

  • Defeyt, C., Strivay, D.: PB15 as 20th and 21st artists’ pigments: conservation concerns. E-Preserv. Sci. 11, 6–14 (2014)

    Google Scholar 

  • Defeyt, C., Vandenabeele, P., Gilbert, B., Van Pevenage, J., Cloots, R., Strivay, D., et al.: Contribution to the identification of α-, β- and ε-copper phthalocyanine blue pigments in modern artists’ paints by X-ray powder diffraction, attenuated total reflectance micro-fourier transform infrared spectroscopy and micro-Raman spectroscopy. J. Raman Spectrosc. 43, 1772–1780 (2012). https://doi.org/10.1002/jrs.4125

    Article  Google Scholar 

  • Defeyt, C., Van Pevenage, J., Moens, L., Strivay, D., Vandenabeele, P.: Micro-Raman spectroscopy and chemometrical analysis for the distinction of copper phthalocyanine polymorphs in paint layers. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 115, 636–640 (2013). https://doi.org/10.1016/j.saa.2013.04.128

    Article  Google Scholar 

  • Delhaye, M., Dhamelincourt, P.: Raman microprobe and microscope with laser excitation. J. Raman Spectrosc. 3, 33–43 (1975). https://doi.org/10.1002/jrs.1250030105

    Article  Google Scholar 

  • Deneckere, A., Schudel, W., Van Bos, M., Wouters, H., Bergmans, A., Vandenabeele, P., et al.: In situ investigations of vault paintings in the Antwerp cathedral. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 75, 511–519 (2010). https://doi.org/10.1016/j.saa.2009.10.032

    Article  Google Scholar 

  • Deneckere, A., Leeflang, M., Bloem, M., Chavannes-Mazel, C.A., Vekemans, B., Vincze, L., et al.: The use of mobile Raman spectroscopy to compare three full-page miniatures from the breviary of Arnold of Egmond. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 83, 194–199 (2011). https://doi.org/10.1016/j.saa.2011.08.016

    Article  Google Scholar 

  • Deneckere, A., Vekemans, B., Voorde, L., Paepe, P., Vincze, L., Moens, L., et al.: Feasibility study of the application of micro-Raman imaging as complement to micro-XRF imaging. Appl. Phys. A Mater. Sci. Process. 106, 363–376 (2012). https://doi.org/10.1007/s00339-011-6693-5

    Article  Google Scholar 

  • Doherty, B., Brunetti, B.G., Sgamellotti, A., Miliani, C.: A detachable SERS active cellulose film: a minimally invasive approach to the study of painting lakes. J. Raman Spectrosc. 42, 1932–1938 (2011). https://doi.org/10.1002/jrs.2942

    Article  Google Scholar 

  • Dominguez-Vidal, A., Jose de la Torre-Lopez, M., Rubio-Domene, R., Ayora-Cañada, M.J.: In situ noninvasive Raman microspectroscopic investigation of polychrome plasterworks in the Alhambra. Analyst. 137, 5763 (2012). https://doi.org/10.1039/c2an36027f

    Article  Google Scholar 

  • Dominguez-Vidal, A., de la Torre-López, M.J., Campos-Suñol, M.J., Rubio-Domene, R., Ayora-Cañada, M.J.: Decorated plasterwork in the Alhambra investigated by Raman spectroscopy: comparative field and laboratory study. J. Raman Spectrosc. 45, 1006–1012 (2014). https://doi.org/10.1002/jrs.4439

    Article  Google Scholar 

  • Eastaugh, N., Walsh, V., Chaplin, T.D., Siddall, R.: The Pigment Compendium – A Dictionary of Historical Pigments. Butterworth-Heinemann, Oxford (2008)

    Google Scholar 

  • Edwards, H.G., Ali, E.M.: Raman spectroscopy of archaeological and ancient resins: problems with database construction for applications in conservation and historical provenancing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 80(1), 49–54 (2011)

    Article  Google Scholar 

  • Edwards, H.G.M., Jorge Villar, S.E., Eremin, K.A.: Raman spectroscopic analysis of pigments from dynastic Egyptian funerary artefacts. J. Raman Spectrosc. 35, 786–795 (2004). https://doi.org/10.1002/jrs.1193

    Article  Google Scholar 

  • Edwards, H.G.M., Nik Hassan, N.F., Middleton, P.S.: Anatase – a pigment in ancient artwork or a modern usurper? Anal. Bioanal. Chem. 384, 1356–1365 (2006). https://doi.org/10.1007/s00216-005-0284-2

    Article  Google Scholar 

  • Eliasson, C., Matousek, P.: Noninvasive authentication of pharmaceutical products through packaging using spatially offset Raman Spectroscopy. Anal. Chem. 79, 1696–1701 (2007). https://doi.org/10.1021/ac062223z

    Article  Google Scholar 

  • Eliasson, C., Matousek, P., Leona, M., Stenger, J., Ferloni, E., Jurasekova, Z., et al.: Numerical Simulations of subsurface probing in diffusely scattering media using spatially offset Raman Spectroscopy. J. Raman Spectrosc. 43, 1–29 (2014). https://doi.org/10.1515/psr-2017-0040

    Article  Google Scholar 

  • Ferraro, J.R., Nakamoto, K.: Introductory Raman Spectroscopy, 2nd edn. Elsevier, Amsterdam (2003). https://doi.org/10.1016/B978-0-12-254105-6.X5000-8

    Book  Google Scholar 

  • Fleischmann, M., Hendra, P.J., McQuillan, A.J.: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1

    Article  Google Scholar 

  • Fremout, W., Saverwyns, S.: Identification of synthetic organic pigments: the role of a comprehensive digital Raman spectral library. J. Raman Spectrosc. 43(11), 1536–1544 (2012)

    Article  Google Scholar 

  • Gardiner, D.J., Graves, P.R. (eds.): Practical Raman Spectroscopy. Springer, Berlin/Heidelberg (1989). https://doi.org/10.1007/978-3-642-74040-4

    Book  Google Scholar 

  • Gilbert, B., Denoël, S., Weber, G., Allart, D.: Analysis of green copper pigments in illuminated manuscripts by micro-Raman spectroscopy. Analyst. 128(10), 1213–1217 (2003)

    Article  Google Scholar 

  • Giordano, D., González-García, D., Russell, J.K., Raneri, S., Bersani, D., Fornasini, L., Di Genova, D., Ferrando, S., Kaliwoda, M., Lottici, P.P., Smit, M., Dingwell, D.B.: A calibrated database of Raman spectra for natural silicate glasses: implications for modelling melt physical properties. J. Raman Spectrosc. 51, 1822–1838 (2019)

    Article  Google Scholar 

  • Gui, O.M., Fălămaş, A., Barbu-Tudoran, L., Aluaş, M., Giambra, B., Cîntă Pînzaru, S.: Surface-enhanced Raman scattering (SERS) and complementary techniques applied for the investigation of an Italian cultural heritage canvas. J. Raman Spectrosc. 44, 277–282 (2013). https://doi.org/10.1002/jrs.4186

    Article  Google Scholar 

  • Guineau, B.: Microanalysis of painted manuscripts and of colored archeological materials by Raman laser microprobe. J. Forensic Sci. 29, 471–485 (1984)

    Article  Google Scholar 

  • Guineau, B., Guichard, V.: Identification des colorants organiques naturels par microspectrometrie Raman de resonance et par effet Raman exalte de surface (SERS); Exemple d’application à l’étude de tranchefiles de reliures anciennes teintes à la garance. ICOM Comm. Conserv. In 8th Triennal Meeting, vol. 2, Sydney, Australia, 1987, pp. 659–666.

    Google Scholar 

  • Guineau, B., Coupry, C., Gousset, M.T., Forgerit, J.P., Vezin, J.: Identification de bleu de lapis-lazuli dans six manuscrits à peintures du XIIe siècle provenant de l’abbaye de Corbie. Scriptorium. 40, 157–171 (1986)

    Article  Google Scholar 

  • Hernanz, A., Gavira-Vallejo, J.M., Ruiz-López, J.F., Edwards, H.G.M.: A comprehensive micro-Raman spectroscopic study of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J. Raman Spectrosc. 39, 972–984 (2008). https://doi.org/10.1002/jrs.1940

    Article  Google Scholar 

  • Hernanz, A., Chang, J., Iriarte, M., Gavira-Vallejo, J.M., de Balbín-Behrmann, R., Bueno-Ramírez, P., et al.: Raman microscopy of hand stencils rock art from the Yabrai Mountain, Inner Mongolia Autonomous Region, China. Appl. Phys. A. 122, 699 (2016). https://doi.org/10.1007/s00339-016-0228-z

    Article  Google Scholar 

  • Hutsebaut, D., Vandenabeele, P., Moens, L.: Evaluation of an accurate calibration and spectral standardization procedure for Raman spectroscopy. Analyst. 130, 1204 (2005). https://doi.org/10.1039/b503624k

    Article  Google Scholar 

  • Jiang, X., Ma, Y., Chen, Y., Li, Y., Ma, Q., Zhang, Z., et al.: Raman analysis of cobalt blue pigment in blue and white porcelain: a reassessment. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 190, 61–67 (2018). https://doi.org/10.1016/j.saa.2017.08.076

    Article  Google Scholar 

  • Jurasekova, Z., del Puerto, E., Bruno, G., García-Ramos, J.V., Sanchez-Cortes, S., Domingo, C.: Extractionless non-hydrolysis surface-enhanced Raman spectroscopic detection of historical mordant dyes on textile fibers. J. Raman Spectrosc. 41, 1455–1461 (2010). https://doi.org/10.1002/jrs.2651

    Article  Google Scholar 

  • Kehe, H.J.: Phthalocyanine compounds (Moser, Frank H.; Thomas, Arthur L.). J. Chem. Educ. 40, A974 (1963). https://doi.org/10.1021/ed040pA974.2

    Article  Google Scholar 

  • Khan, K.M., Ghosh, N., Majumder, S.K.: Off-confocal Raman spectroscopy (OCRS) for subsurface measurements in layered turbid samples. J. Opt. 18, 095301 (2016). https://doi.org/10.1088/2040-8978/18/9/095301

    Article  Google Scholar 

  • Kurouski, D., Zaleski, S., Casadio, F., Van Duyne, R.P., Shah, N.C.: Tip-Enhanced Raman Spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J. Am. Chem. Soc. 136, 8677–8684 (2014). https://doi.org/10.1021/ja5027612

    Article  Google Scholar 

  • La Nasa, J., Campanella, B., Sabatini, F., Rava, A., Shank, W., Lucero-Gomez, P., et al.: 60 years of street art: a comparative study of the artists’ materials through spectroscopic and mass spectrometric approaches. J. Cult. Herit. 48, 129–140 (2021). https://doi.org/10.1016/j.culher.2020.11.016

    Article  Google Scholar 

  • Lafuente, B., Downs, R.T., Yang, H., Stone, N.: The power of databases: the RRUFF project. In: Armbruster, T., Danisi, R.M. (eds.) Highlights in Mineralogical Crystallography, pp. 1–29. Walter de Gruyter GmbH (2016)

    Google Scholar 

  • Lahlil, S., Lebon, M., Beck, L., Rousselière, H., Vignaud, C., Reiche, I., Menu, M., Paillet, P., Plassard, F.: The first in situ micro-Raman spectroscopic analysis of prehistoric cave art of Rouffignac St–Cernin, France. J. Raman Spectrosc. 43, 1637–1643 (2012)

    Article  Google Scholar 

  • Lau, D., Villis, C., Furman, S., Livett, M.: Multispectral and hyperspectral image analysis of elemental and micro-Raman maps of cross-sections from a 16th century painting. Anal. Chim. Acta. 610, 15–24 (2008). https://doi.org/10.1016/j.aca.2007.12.043

    Article  Google Scholar 

  • Lauwers, D., Cattersel, V., Vandamme, L., Van Eester, A., De Langhe, K., Moens, L., et al.: Pigment identification of an illuminated mediaeval manuscript De Civitate Dei by means of a portable Raman equipment. J. Raman Spectrosc. 45, 1266–1271 (2014a). https://doi.org/10.1002/jrs.4500

    Article  Google Scholar 

  • Lauwers, D., Hutado, A.G., Tanevska, V., Moens, L., Bersani, D., Vandenabeele, P.: Characterisation of a portable Raman spectrometer for in situ analysis of art objects. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 118, 294–301 (2014b). https://doi.org/10.1016/j.saa.2013.08.088

    Article  Google Scholar 

  • Lauwers, D., Brondeel, P., Moens, L., Vandenabeele, P.: In situ Raman mapping of art objects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 374, 20160039 (2016). https://doi.org/10.1098/rsta.2016.0039

    Article  Google Scholar 

  • Laver, M.: Titanium dioxide whites. In: FitzHugh, E.W. (ed.) Artist’s Pigment A Handbook of Their Historical Character, vol. 3, pp. 295–339. National Gallery of Art, Washington & Oxford University Press, Oxford (1997)

    Google Scholar 

  • Leona, M.: Microanalysis of organic pigments and glazes in polychrome works of art by surface-enhanced resonance Raman scattering. Proc. Natl. Acad. Sci. 106, 14757–14762 (2009). https://doi.org/10.1073/pnas.0906995106

    Article  Google Scholar 

  • Leona, M., Stenger, J., Ferloni, E.: Application of surface-enhanced Raman scattering techniques to the ultrasensitive identification of natural dyes in works of art. J. Raman Spectrosc. 37, 981–992 (2006). https://doi.org/10.1002/jrs.1582

    Article  Google Scholar 

  • Leona, M., Decuzzi, P., Kubic, T.A., Gates, G., Lombardi, J.R.: Nondestructive identification of natural and synthetic organic colorants in works of art by surface enhanced Raman scattering. Anal. Chem. 83, 3990–3993 (2011). https://doi.org/10.1021/ac2007015

    Article  Google Scholar 

  • Liao, Z., Sinjab, F., Gibson, G., Padgett, M., Notingher, I.: DMD-based software-configurable spatially-offset Raman spectroscopy for spectral depth-profiling of optically turbid samples. Opt. Express. 24, 12701 (2016). https://doi.org/10.1364/OE.24.012701

    Article  Google Scholar 

  • Lombardi, J.R.: In: Brown, T.G., Creath, K., Kogelnik, H., Kriss, M.A., Schmit, J., Weber, M.J. (eds.) Radiation Interaction with Molecules Opt. Encyclopedia, pp. 2603–2635. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007). https://doi.org/10.1002/9783527600441.oe082

    Chapter  Google Scholar 

  • Londero, P.S., Lombardi, J.R., Leona, M.: Laser ablation surface-enhanced Raman microspectroscopy. Anal. Chem. 85, 5463–5467 (2013). https://doi.org/10.1021/ac400440c

    Article  Google Scholar 

  • Long, D.: The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, Chichester (2002)

    Book  Google Scholar 

  • Lucas, H.B., Silva, H.J.A., Tasayco, C.M.S., Munayco, P., Faria, J.L.B.: Archaeological pottery from Nasca culture studied by Raman and Mössbauer spectroscopy combined with X-ray diffraction. Vib. Spectrosc. 97, 140–145 (2018). https://doi.org/10.1016/j.vibspec.2018.06.010

    Article  Google Scholar 

  • Maguregui, M., Knuutinen, U., Martínez-Arkarazo, I., Giakoumaki, A., Castro, K., Madariaga, J.M.: Field Raman analysis to diagnose the conservation state of excavated walls and wall paintings in the archaeological site of Pompeii (Italy). J. Raman Spectrosc. 43, 1747–1753 (2012). https://doi.org/10.1002/jrs.4109

    Article  Google Scholar 

  • Maguregui, M., Castro, K., Morillas, H., Trebolazabala, J., Knuutinen, U., Wiesinger, R., et al.: Multianalytical approach to explain the darkening process of hematite pigment in paintings from ancient Pompeii after accelerated weathering experiments. Anal. Methods. 6, 372–378 (2014). https://doi.org/10.1039/C3AY41741G

    Article  Google Scholar 

  • Marcaida, I., Maguregui, M., Morillas, H., Prieto-Taboada, N., de Vallejuelo, S.F.-O., Veneranda, M., et al.: In situ non-invasive characterization of the composition of Pompeian pigments preserved in their original bowls. Microchem. J. 139, 458–466 (2018). https://doi.org/10.1016/j.microc.2018.03.028

    Article  Google Scholar 

  • Marucci, G., Beeby, A., Parker, A.W., Nicholson, C.E.: Raman spectroscopic library of medieval pigments collected with five different wavelengths for investigation of illuminated manuscripts. Anal. Methods. 10(10), 1219–1236 (2018)

    Article  Google Scholar 

  • Matousek, P., Clark, I.P., Draper, E.R.C., Morris, M.D., Goodship, A.E., Everall, N., et al.: Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy. Appl. Spectrosc. 59, 393–400 (2005). https://doi.org/10.1366/0003702053641450

    Article  Google Scholar 

  • Matousek, P., Conti, C., Colombo, C., Realini, M.: Monte Carlo simulations of subsurface analysis of painted layers in micro-scale spatially offset Raman spectroscopy. Appl. Spectrosc. 69, 1091–1095 (2015). https://doi.org/10.1366/15-07894

    Article  Google Scholar 

  • Matousek, P., Conti, C., Realini, M., Colombo, C.: Micro-scale spatially offset Raman spectroscopy for non-invasive subsurface analysis of turbid materials. Analyst. 141, 731–739 (2016). https://doi.org/10.1039/C5AN02129D

    Article  Google Scholar 

  • Matthiae, M., Kristensen, A.: Hyperspectral spatially offset Raman spectroscopy in a microfluidic channel. Opt. Express. 27, 3782 (2019). https://doi.org/10.1364/OE.27.003782

    Article  Google Scholar 

  • McCreery, R.: Raman Spectroscopy for Chemical Analysis. Wiley, New York (2000)

    Book  Google Scholar 

  • Morillas, H., Maguregui, M., Bastante, J., Huallparimachi, G., Marcaida, I., García-Florentino, C., et al.: Characterization of the Inkaterra rock shelter paintings exposed to tropical climate (Machupicchu, Peru). Microchem. J. 137, 422–428 (2018). https://doi.org/10.1016/j.microc.2017.12.003

    Article  Google Scholar 

  • Nevin, A., Melia, J.L., Osticioli, I., Gautier, G., Colombini, M.P.: The identification of copper oxalates in a 16th century Cypriot exterior wall painting using micro FTIR, micro Raman spectroscopy and Gas Chromatography-Mass Spectrometry. J. Cult. Herit. 9, 154–161 (2008). https://doi.org/10.1016/j.culher.2007.10.002

    Article  Google Scholar 

  • Newman, J., Chen, K., Leona, M., Vo-Dinh, T.: Surface-enhanced Raman scattering for identification of organic pigments and dyes in works of art and cultural heritage material. Sens. Rev. 27, 109–120 (2007)

    Article  Google Scholar 

  • Pitarch, A., Ruiz, J.F., Fdez-Ortiz De Vallejuelo, S., Hernanz, A., Maguregui, M., Madariaga, J.M.: In situ characterization by Raman and X-ray fluorescence spectroscopy of post-Paleolithic blackish pictographs exposed to the open air in Los Chaparros shelter (Albalate del Arzobispo, Teruel, Spain). Anal. Methods. 6, 6641–6650 (2014)

    Article  Google Scholar 

  • Pozzi, F., Leona, M.: Surface-enhanced Raman spectroscopy in art and archaeology. J. Raman Spectrosc. 47, 67–77 (2016). https://doi.org/10.1002/jrs.4827

    Article  Google Scholar 

  • Pozzi, F., Lombardi, J.R., Bruni, S., Leona, M.: Sample treatment considerations in the analysis of organic colorants by surface-enhanced Raman scattering. Anal. Chem. 84, 3751–3757 (2012). https://doi.org/10.1021/ac300380c

    Article  Google Scholar 

  • Pozzi, F., Lombardi, J.R., Leona, M.: Winsor & Newton original handbooks: a surface-enhanced Raman scattering (SERS) and Raman spectral database of dyes from modern watercolor pigments. Herit. Sci. 1, 23 (2013). https://doi.org/10.1186/2050-7445-1-23

    Article  Google Scholar 

  • Pozzi, F., van den Berg, K.J., Fiedler, I., Casadio, F.: A systematic analysis of red lake pigments in French Impressionist and Post-Impressionist paintings by surface-enhanced Raman spectroscopy (SERS). J. Raman Spectrosc. 45, 1119–1126 (2014). https://doi.org/10.1002/jrs.4483

    Article  Google Scholar 

  • Pozzi, F., Basso, E., Rizzo, A., Cesaratto, A., Tague Jr., T.J.: Evaluation and optimization of the potential of a handheld Raman spectrometer: in situ, noninvasive materials characterization in artworks. J. Raman Spectrosc. 50, jrs.5585 (2019). https://doi.org/10.1002/jrs.5585

    Article  Google Scholar 

  • Prieto-Taboada, N., Fdez-Ortiz de Vallejuelo, S., Santos, A., Veneranda, M., Castro, K., Maguregui, M., et al.: Understanding the degradation of the blue colour in the wall paintings of Ariadne’s house (Pompeii, Italy) by non-destructive techniques. J. Raman Spectrosc. 52, 85–94 (2021). https://doi.org/10.1002/jrs.5941

    Article  Google Scholar 

  • Realini, M., Botteon, A., Conti, C., Colombo, C., Matousek, P.: Development of portable defocusing micro-scale spatially offset Raman spectroscopy. Analyst. 141, 3012–3019 (2016). https://doi.org/10.1039/C6AN00413J

    Article  Google Scholar 

  • Realini, M., Conti, C., Botteon, A., Colombo, C., Matousek, P.: Development of a full micro-scale spatially offset Raman spectroscopy prototype as a portable analytical tool. Analyst. 142, 351–355 (2017). https://doi.org/10.1039/C6AN02470J

    Article  Google Scholar 

  • Retko, K., Ropret, P., Cerc Korošec, R.: Surface-enhanced Raman spectroscopy (SERS) analysis of organic colourants utilising a new UV-photoreduced substrate. J. Raman Spectrosc. 45, 1140–1146 (2014). https://doi.org/10.1002/jrs.4533

    Article  Google Scholar 

  • Rousaki, A., Bellelli, C., Carballido Calatayud, M., Aldazabal, V., Custo, G., Moens, L., et al.: Micro-Raman analysis of pigments from hunter-gatherer archaeological sites of North Patagonia (Argentina). J. Raman Spectrosc. 46, 1016–1024 (2015). https://doi.org/10.1002/jrs.4723

    Article  Google Scholar 

  • Rousaki, A., Botteon, A., Colombo, C., Conti, C., Matousek, P., Moens, L., et al.: Development of defocusing micro-SORS mapping: a study of a 19th century porcelain card. Anal. Methods. 9, 6435–6442 (2017a). https://doi.org/10.1039/C7AY02336G

    Article  Google Scholar 

  • Rousaki, A., Vázquez, C., Aldazábal, V., Bellelli, C., Carballido Calatayud, M., Hajduk, A., et al.: The first use of portable Raman instrumentation for the in situ study of prehistoric rock paintings in Patagonian sites. J. Raman Spectrosc. 48, 1459–1467 (2017b). https://doi.org/10.1002/jrs.5107

    Article  Google Scholar 

  • Rousaki, A., Moens, L., Vandenabeele, P.: Archaeological investigations (archaeometry). Phys. Sci. Rev. 3 (2018a). https://doi.org/10.1515/psr-2017-0048

  • Rousaki, A., Vargas, E., Vázquez, C., Aldazábal, V., Bellelli, C., Carballido Calatayud, M., et al.: On-field Raman spectroscopy of Patagonian prehistoric rock art: pigments, alteration products and substrata. TrAC Trends Anal. Chem. 105, 338–351 (2018b). https://doi.org/10.1016/j.trac.2018.05.011

    Article  Google Scholar 

  • Rousaki, A., Pincé, P., Lycke, S., Harth, A., Martens, M., Moens, L., et al.: In situ and laboratory analysis on the polychromy of the Ghent Pantheon cork model by Antonio Chichi. Eur. Phys. J. Plus. 134, 375 (2019). https://doi.org/10.1140/epjp/i2019-12754-3

    Article  Google Scholar 

  • Rousaki, A., Costa, M., Saelens, D., Lycke, S., Sánchez, A., Tuñón, J., et al.: A comparative mobile Raman study for the on field analysis of the Mosaico de los Amores of the Cástulo Archaeological Site (Linares, Spain). J. Raman Spectrosc. 51, 1913–1923 (2020). https://doi.org/10.1002/jrs.5624

    Article  Google Scholar 

  • Saverwyns, S.: Russian avant-garde … or not? A micro-Raman spectroscopy study of six paintings attributed to Liubov Popova. J. Raman Spectrosc. 41, 1525–1532 (2010). https://doi.org/10.1002/jrs.2654

    Article  Google Scholar 

  • Scherrer, N.C., Stefan, Z., Francoise, D., Annette, F., Renate, K.: Synthetic organic pigments of the 20th and 21st century relevant to artist’s paints: Raman spectra reference collection. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73, 505–524 (2009). https://doi.org/10.1016/j.saa.2008.11.029

    Article  Google Scholar 

  • Schulte, F., Brzezinka, K.W., Lutzenberger, K., Stege, H., Panne, U.: Raman spectroscopy of synthetic organic pigments used in 20th century works of art. J. Raman Spectrosc. 39, 1455–1463 (2008). https://doi.org/10.1002/jrs.2021

    Article  Google Scholar 

  • Sekar, S.K.V., Mosca, S., Farina, A., Martelli, F., Taroni, P., Valentini, G., et al.: Frequency offset Raman spectroscopy (FORS) for depth probing of diffusive media. Opt. Express. 25, 4585 (2017). https://doi.org/10.1364/OE.25.004585

    Article  Google Scholar 

  • Sessa, C., Weiss, R., Niessner, R., Ivleva, N.P., Stege, H.: Towards a Surface Enhanced Raman Scattering (SERS) spectra database for synthetic organic colourants in cultural heritage. The effect of using different metal substrates on the spectra. Microchem. J. 138, 209–225 (2018). https://doi.org/10.1016/j.microc.2018.01.009

    Article  Google Scholar 

  • Smith, G.D., Clark, R.J.H.: The role of H2S in pigment blackening. J. Cult. Herit. 3, 101–105 (2002). https://doi.org/10.1016/S1296-2074(02)01173-1

    Article  Google Scholar 

  • Smith, E., Dent, G.: Modern Raman Spectroscopy – A Practical Approach. Wiley, Chichester (2004). https://doi.org/10.1002/0470011831

    Book  Google Scholar 

  • Stone, N., Baker, R., Rogers, K., Parker, A.W., Matousek, P.: Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer. Analyst. 132, 899 (2007). https://doi.org/10.1039/b705029a

    Article  Google Scholar 

  • Tobias, R.S.: Raman spectroscopy in inorganic chemistry. J. Chem. Educ. 44, 70 (1967). https://doi.org/10.1021/ed044p70

    Article  Google Scholar 

  • Tomasini, E., Palamarczuk, V., Zalduendo, M.M., Halac, E.B., Porto López, J.M., Fuertes, M.C.: The colors of San José pottery from Yocavil valley, Argentine Northwest. Strategy for the characterization of archaeological pigments using non-destructive techniques. J. Archaeol. Sci. Rep. 29, 102123 (2020). https://doi.org/10.1016/j.jasrep.2019.102123

    Article  Google Scholar 

  • Tournié, A., Prinsloo, L.C., Paris, C., Colomban, P., Smith, B.: The first in situ Raman spectroscopic study of san rock art in South Africa: procedures and preliminary results. J. Raman Spectrosc. 42, 399–406 (2011)

    Article  Google Scholar 

  • Vagnini, M., Gabrieli, F., Daveri, A., Sali, D.: Handheld new technology Raman and portable FT-IR spectrometers as complementary tools for the in situ identification of organic materials in modern art. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 176, 174–182 (2017). https://doi.org/10.1016/j.saa.2017.01.006

    Article  Google Scholar 

  • Van de Voorde, L., Van Pevenage, J., De Langhe, K., De Wolf, R., Vekemans, B., Vincze, L., et al.: Non-destructive in situ study of “Mad Meg” by Pieter Bruegel the Elder using mobile X-ray fluorescence, X-ray diffraction and Raman spectrometers. Spectrochim. Acta Part B At. Spectrosc. 97, 1–6 (2014). https://doi.org/10.1016/j.sab.2014.04.006

    Article  Google Scholar 

  • Vandenabeele, P.: Practical Raman Spectroscopy – An Introduction. Wiley, Chichester (2013). https://doi.org/10.1002/9781119961284

    Book  Google Scholar 

  • Vandenabeele, P., Donais, M.K.: Mobile spectroscopic instrumentation in archaeometry research. Appl. Spectrosc. 70, 27–41 (2016). https://doi.org/10.1177/0003702815611063

    Article  Google Scholar 

  • Vandenabeele, P., Wehling, B., Moens, L., Dekeyzer, B., Cardon, B., von Bohlen, A., et al.: Pigment investigation of a late-medieval manuscript with total reflection X-ray fluorescence and micro-Raman spectroscopy. Analyst. 124, 169–172 (1999). https://doi.org/10.1039/a807343k

    Article  Google Scholar 

  • Vandenabeele, P., Moens, L., Edwards, H.G.M., Dams, R.: Raman spectroscopic database of azo and application to modern art studies. J. Raman Spectrosc. 31, 509–517 (2000a). https://doi.org/10.1002/1097-4555(200006)31:6<509::AID-JRS566>3.0.CO;2-0

    Article  Google Scholar 

  • Vandenabeele, P., Wehling, B., Moens, L., Edwards, H., De Reu, M., Van Hooydonk, G.: Analysis with micro-Raman spectroscopy of natural organic binding media and varnishes used in art. Anal. Chim. Acta. 407(1–2), 261–274 (2000b)

    Article  Google Scholar 

  • Vandenabeele, P., Verpoort, F., Moens, L.: Non-destructive analysis of paintings using Fourier transform Raman spectroscopy with fibre optics. J. Raman Spectrosc. 32, 263–269 (2001). https://doi.org/10.1002/jrs.691

    Article  Google Scholar 

  • Vandenabeele, P., Grimaldi, D.M., Edwards, H.G., Moens, L.: Raman spectroscopy of different types of Mexican copal resins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 59(10), 2221–2229 (2003)

    Article  Google Scholar 

  • Vandenabeele, P., Weis, T.L., Grant, E.R., Moens, L.J.: A new instrument adapted to in situ Raman analysis of objects of art. Anal. Bioanal. Chem. 379, 137–142 (2004). https://doi.org/10.1007/s00216-004-2551-z

    Article  Google Scholar 

  • Vandenabeele, P., Bodé, S., Alonso, A., Moens, L.: Raman spectroscopic analysis of the Maya wall paintings in Ek’Balam, Mexico. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 61, 2349–2356 (2005a). https://doi.org/10.1016/j.saa.2005.02.034

    Article  Google Scholar 

  • Vandenabeele, P., Lambert, K., Matthys, S., Schudel, W., Bergmans, A., Moens, L.: In situ analysis of mediaeval wall paintings: a challenge for mobile Raman spectroscopy. Anal. Bioanal. Chem. 383, 707–712 (2005b). https://doi.org/10.1007/s00216-005-0045-2

    Article  Google Scholar 

  • Vandenabeele, P., Castro, K., Hargreaves, M., Moens, L., Madariaga, J.M., Edwards, H.G.M.: Comparative study of mobile Raman instrumentation for art analysis. Anal. Chim. Acta. 588, 108–116 (2007a). https://doi.org/10.1016/j.aca.2007.01.082

    Article  Google Scholar 

  • Vandenabeele, P., Tate, J., Moens, L.: Non-destructive analysis of museum objects by fibre-optic Raman spectroscopy. Anal. Bioanal. Chem. 387, 813–819 (2007b). https://doi.org/10.1007/s00216-006-0758-x

    Article  Google Scholar 

  • Vandenabeele, P., Christensen, M.C., Moens, L.: Analysis of South-Asian Shaman paintings at the national museum of Denmark. J. Raman Spectrosc. 39, 1030–1034 (2008). https://doi.org/10.1002/jrs.1905

    Article  Google Scholar 

  • Vandenabeele, P., Garcia-Moreno, R., Mathis, F., Leterme, K., Van Elslande, E., Hocquet, F.-P., et al.: Multi-disciplinary investigation of the tomb of Menna (TT69), Theban Necropolis, Egypt. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 73, 546–552 (2009). https://doi.org/10.1016/j.saa.2008.07.028

    Article  Google Scholar 

  • Vandenabeele, P., Edwards, H.G.M., Jehlička, J.: The role of mobile instrumentation in novel applications of Raman spectroscopy: archaeometry, geosciences, and forensics. Chem. Soc. Rev. 43, 2628 (2014). https://doi.org/10.1039/c3cs60263j

    Article  Google Scholar 

  • Vandenabeele, P., Conti, C., Rousaki, A., Moens, L., Realini, M., Matousek, P.: Development of a fiber-optics microspatially offset Raman spectroscopy sensor for probing layered materials. Anal. Chem. 89, 9218–9223 (2017). https://doi.org/10.1021/acs.analchem.7b01978

    Article  Google Scholar 

  • Wehling, B., Vandenabeele, P., Moens, L., Klockenkämper, R., von Bohlen, A., Van Hooydonk, G., et al.: Investigation of pigments in medieval manuscripts by micro raman spectroscopy and total reflection X-ray fluorescence spectrometry. Microchim. Acta. 130, 253–260 (1999). https://doi.org/10.1007/BF01242913

    Article  Google Scholar 

  • Zalaffi, M.S., Agostinelli, I., Karimian, N., Ugo, P.: Ag-nanostars for the sensitive SERS detection of dyes in artistic cross-sections – Madonna della Misericordia of the National Gallery of Parma: a case study. Heritage. 3, 1344–1359 (2020). https://doi.org/10.3390/heritage3040074

    Article  Google Scholar 

  • Zoleo, A., Rossi, C., Poggi, G., Rossi, M., Meneghetti, M., Baglioni, P.: Spotting aged dyes on paper with SERS. Phys. Chem. Chem. Phys. 22, 24070–24076 (2020). https://doi.org/10.1039/D0CP04099A

    Article  Google Scholar 

Download references

Acknowledgements

Anastasia Rousaki thanks the Research Foundation–Flanders (FWO-Vlaanderen) for her postdoctoral fellowship, project number 12X1919N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vandenabeele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rousaki, A., Vandenabeele, P. (2022). Raman Analysis of Inorganic and Organic Pigments. In: Colombini, M.P., Degano, I., Nevin, A. (eds) Analytical Chemistry for the Study of Paintings and the Detection of Forgeries. Cultural Heritage Science. Springer, Cham. https://doi.org/10.1007/978-3-030-86865-9_10

Download citation

Publish with us

Policies and ethics