Skip to main content

The Largest Connected Subgraph Game

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

We introduce the largest connected subgraph game played on an undirected graph G. Each round, Alice colours an uncoloured vertex of G red, and then, Bob colours one blue. Once every vertex is coloured, Alice (Bob, resp.) wins if there is a red (blue, resp.) connected subgraph whose order is greater than that of any blue (red, resp.) connected subgraph. If neither player wins, it is a draw. We prove that Alice can ensure Bob never wins, and define a class of graphs (reflection graphs) in which the game is a draw. We show that the game is PSPACE-complete in bipartite graphs of diameter 5, and that recognising reflection graphs is GI-hard. We prove that the game is a draw in paths if and only if the path has even order or at least 11 vertices, and that Alice wins in cycles if and only if the cycle is of odd order. We also give an algorithm computing the outcome of the game in cographs in linear time.

This work has been supported by the European Research Council (ERC) consolidator grant No. 725978 SYSTEMATICGRAPH, the STIC-AmSud project GALOP, the PHC Xu Guangqi project DESPROGES, and the UCA\(^\textsc {jedi}\) Investments in the Future project managed by the National Research Agency (ANR-15-IDEX-01). See [2] for the full version of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, S.D., Huggan, M., Mc Inerney, F., Nowakowski, R.J.: The orthogonal colouring game. Theoret. Comput. Sci. 795, 312–325 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N.: The largest connected subgraph game. Research report (2021). https://hal.inria.fr/hal-03137305

  3. Bonnet, E., Jamain, F., Saffidine, A.: On the complexity of connection games. Theoret. Comput. Sci. 644, 2–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Browne, C.: Connection Games: Variations on a Theme. AK Peters (2005)

    Google Scholar 

  5. Bruno, J., Weinberg, L.: A constructive graph-theoretic solution of the Shannon switching game. IEEE Trans. Circuit Theory 17(1), 74–81 (1970)

    Article  MathSciNet  Google Scholar 

  6. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Duchêne, É., Gonzalez, S., Parreau, A., Rémila, E., Solal, P.: INFLUENCE: a partizan scoring game on graphs. CoRR abs/2005.12818 (2020)

    Google Scholar 

  8. Even, S., Tarjan, R.E.: A combinatorial problem which is complete in polynomial space. J. ACM 23(4), 710–719 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gardner, M.: The Scientific American Book of Mathematical Puzzles & Diversions. Simon and Schuster, New York (1959)

    Google Scholar 

  10. Gardner, M.: The Second Scientific American Book of Mathematical Puzzles and Diversions. Simon and Schuster, New York (1961)

    Google Scholar 

  11. Larsson, U., Nowakowski, R.J., Neto, J.P., Santos, C.P.: Guaranteed scoring games. Electron. J. Comb. 23(3) (2016)

    Google Scholar 

  12. Larsson, U., Nowakowski, R.J., Santos, C.P.: Games with guaranteed scores and waiting moves. Int. J. Game Theory 47(2), 653–671 (2017). https://doi.org/10.1007/s00182-017-0590-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Micek, P., Walczak, B.: A graph-grabbing game. Comb. Probab. Comput. 20(4), 623–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Reisch, S.: Hex ist PSPACE-vollständig. Acta Informatica 15(2), 167–191 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shapovalov, A.: Occupation games on graphs in which the second player takes almost all vertices. Discrete Appl. Math. 159(15), 1526–1527 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Foivos Fioravantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bensmail, J., Fioravantes, F., Mc Inerney, F., Nisse, N. (2021). The Largest Connected Subgraph Game. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics