Skip to main content

Quantity Over Quality? – A Framework for Combining Mobile Crowd Sensing and High Quality Sensing

  • 1611 Accesses

Part of the Lecture Notes in Information Systems and Organisation book series (LNISO,volume 48)

Abstract

Mobile Crowd Sensing is a widespread sensing paradigm, successful through the ever-growing availability of mobile devices and their increasing sensor quality. Mobile Crowd Sensing offers low-cost data collection, scalability, and mobility, but faces downsides like unknown or low sensing quality and uncertainty about user behavior and movement. We examine the combination of traditional High Quality Sensing methods and Mobile Crowd Sensing in a Hybrid Sensing system in order to build a value-creating overall system, aiming to use both sensing methods to ensure high quality of data, yet also benefiting from the advantages Mobile Crowd Sensing has to offer such as mobility, scalability, and low deployment cost. We conduct a structured literature review on the current state and derive a classification matrix for Hybrid Sensing applications.

Keywords

  • Mobile Crowd Sensing
  • High quality sensing
  • Data combination
  • Hybrid sensing
  • Design science

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86800-0_3
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-86800-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    (“mobile crowdsensing” OR “mobile crowd sensing” OR “participatory sensing”) AND (“industrial sens*” OR “traditional sens*” OR “stationary sens*” OR “static sens*” OR “special* sens*” OR “sensor node*” OR “expert contribut*” OR “industrial data” OR “hybrid” OR “industrial IOT” OR “industrial Internet of Things”) Note: * represents one or more wildcard characters.

References

  1. Roy, S.: How Google Maps is positioned to become the next big content platform. https://www.financialexpress.com/industry/technology/how-google-maps-is-positioned-to-become-the-next-big-content-platform/2087251/. Accessed 28 Nov 2020

  2. Kapadia, A., Kotz, D., Triandopoulos, N.: Opportunistic sensing: security challenges for the new paradigm. In: First International Conference on Communication Systems and Networks and workshops, pp. 1–10. IEEE (2009)

    Google Scholar 

  3. Burke, J.A., et al.: Participatory sensing. In: Workshop on World-Sensor-Web (WSW): Mobile Device Centric Sensor Networks and Applications (2006)

    Google Scholar 

  4. Joly, A., et al.: A look inside the Pl@ntNet experience. Multimedia Syst. 22(6), 751–766 (2015). https://doi.org/10.1007/s00530-015-0462-9

    CrossRef  Google Scholar 

  5. Pl@ntnet Website: https://plantnet.org/en/. Accessed 28 Nov 2020

  6. Bonnet, P., et al.: How citizen scientists contribute to monitor protected areas thanks to automatic plant identification tools. Ecol. Solut. Evidence 1 (2020)

    Google Scholar 

  7. Shu, L., Chen, Y., Huo, Z., Bergmann, N., Wang, L.: When mobile crowd sensing meets traditional industry. IEEE Access 5, 15300–15307 (2017)

    CrossRef  Google Scholar 

  8. Huang, J., et al.: Blockchain-based mobile crowd sensing in industrial systems. IEEE Trans. Industr. Inf. 16, 6553–6563 (2020)

    CrossRef  Google Scholar 

  9. Sagl, G., Resch, B., Blaschke, T.: Contextual sensing: integrating contextual information with human and technical geo-sensor information for smart cities. Sensors 15, 17013–17035 (2015)

    CrossRef  Google Scholar 

  10. Son, S.-C., Lee, B.-T., Ko, S.K., Kang, K.: Hybrid sensor calibration scheme for mobile crowdsensing-based city-scale environmental measurements. ETRI J. 38, 551–559 (2016)

    Google Scholar 

  11. Ding, S., He, X., Wang, J., Qiao, B., Gai, K.: Static node center opportunistic coverage and hexagonal deployment in hybrid crowd sensing. J. Signal Process. Syst. 86, 251–267 (2017)

    CrossRef  Google Scholar 

  12. Liao, C.-C., et al.: SAIS: Smartphone augmented infrastructure sensing for public safety and sustainability in smart cities. In: Proceedings of the 1st International Workshop on Emerging Multimedia Applications and Services for Smart Cities, pp. 3–8 (2014)

    Google Scholar 

  13. Bijarbooneh, F.H., Flener, P., Ngai, E.C.-H., Pearson, J.: An optimisation-based approach for wireless sensor deployment in mobile sensing environments. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2108–2112 (2012)

    Google Scholar 

  14. Kuechler, B., Vaishnavi, V.: On theory development in design science research: anatomy of a research project. Eur. J. Inf. Syst. 17, 489–504 (2008)

    CrossRef  Google Scholar 

  15. Zustandserfassung und-bewertung (ZEB) auf Bundesfernstraßen: https://www.bmvi.de/SharedDocs/DE/Artikel/StB/zustandserfassung-und-bewertung.html. Accessed 28 Nov 2020

  16. Klopfenstein, L.C., et al.: Mobile crowdsensing for road sustainability: exploitability of publicly-sourced data. Int. Rev. Appl. Econ. 34, 650–671 (2020)

    CrossRef  Google Scholar 

  17. Allouch, A., Koubâa, A., Abbes, T., Ammar, A.: Roadsense: smartphone application to estimate road conditions using accelerometer and gyroscope. IEEE Sens. J. 17, 4231–4238 (2017)

    CrossRef  Google Scholar 

  18. Forslöf, L., Jones, H.: Roadroid: continuous road condition monitoring with smart phones. J. Civil Eng. Architec. 9, 485–496 (2015)

    Google Scholar 

  19. Webster, J., Watson, R.T.: Analyzing the past to prepare for the future: writing a literature review. MIS Quarterly, xiii–xxiii (2002)

    Google Scholar 

  20. vom Brocke, J., et al.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: ECIS 2009 Proceedings (2009)

    Google Scholar 

  21. Guo, B., Yu, Z., Zhou, X., Zhang, D.: From participatory sensing to Mobile Crowd Sensing. In: 2014 IEEE International Conference on Pervasive Computing and Communication Workshops, PERCOM WORKSHOPS 2014 (2014)

    Google Scholar 

  22. Rimland, J.C., Hall, D.L., Graham, J.L.: Human cognitive and perceptual factors in JDL level 4 hard/soft data fusion. In: Proceedings of SPIE – The International Society for Optical Engineering (2012)

    Google Scholar 

  23. Han, G., Liu, L., Chan, S., Yu, R., Yang, Y.: HySense: a hybrid mobile CrowdSensing framework for sensing opportunities compensation under dynamic coverage constraint. IEEE Commun. Mag. 55, 93–99 (2017)

    CrossRef  Google Scholar 

  24. Ding, S., He, X., Wang, J., Dai, W., Wang, X.: Static node center hexagonal deployment in hybrid crowd sensing. In: 2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security and 2015 IEEE 12th International Conference on Embedded Software and Systems, HPCC-CSS-ICESS 2015 (2015)

    Google Scholar 

  25. Girolami, M., Chessa, S., Adami, G., Dragone, M., Foschini, L.: Sensing interpolation strategies for a mobile crowdsensing platform. In: 5th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2017, pp. 102–108. IEEE (2017)

    Google Scholar 

  26. Zhu, Q., Uddin, M.Y.S., Venkatasubramanian, N., Hsu, C.-H.: Spatiotemporal scheduling for crowd augmented urban sensing. In: IEEE Conference on Computer Communications, IEEE INFOCOM 2018, pp. 1997–2005 (2018)

    Google Scholar 

  27. Hachem, S., et al.: Monitoring noise pollution using the urban civics middleware. In: IEEE First International Conference on Big Data Computing Service and Applications, BigDataService 2015, pp. 52–61. IEEE (2015)

    Google Scholar 

  28. Lent, R., Minero, M., North, R., Barria, J.: Evaluating mobility models in participatory sensing. In: Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM (2012)

    Google Scholar 

  29. Perez, A.J.: An Architecture for Global Ubiquitous Sensing (2011)

    Google Scholar 

  30. Ngai, E.C.-H., Xiong, J.: Adaptive collaborative sensing using mobile phones and stationary sensors. In: Proceedings of the International Conference on Dependable Systems and Networks (2011)

    Google Scholar 

  31. Ruan, Z., Ngai, E.C.-H., Liu, J.: Wireless sensor network deployment in mobile phones assisted environment. In: 2010 IEEE 18th International Workshop on Quality of Service (IWQoS), pp. 1–9 (2010)

    Google Scholar 

  32. Al Sawafi, Y., Touzene, A., Day, K., Alzeidi, N.: Toward hybrid RPL based IoT sensing for smart city. In: 2018 International Conference on Information Networking (ICOIN), pp. 599–604 (2018)

    Google Scholar 

  33. Sawafi, Y.A., Touzene, A., Day, K., Alzeidi, N.: Hybrid RPL-based sensing and routing protocol for smart city. Int. J. Pervasive Comput. Commun. 16, 279–306 (2020)

    CrossRef  Google Scholar 

  34. Zhu, Q.: Exploiting Mobile Plus In-Situ Deployments in Community IoT Systems (2019)

    Google Scholar 

  35. Ma, Y., Hou, F., Ma, S., Liu, D.: Dynamic sensor selection in heterogeneous sensor network. In: 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (2016)

    Google Scholar 

  36. Resch, B., Blaschke, T.: Fusing human and technical sensor data: concepts and challenges. SIGSPATIAL Special 7, 29–35 (2015)

    CrossRef  Google Scholar 

  37. Kalogiros, L.A., Lagouvardos, K., Nikoletseas, S., Papadopoulos, N., Tzamalis, P.: Allergymap: a hybrid mhealth mobile crowdsensing system for allergic diseases epidemiology: multidisciplinary case study. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2018 (2018)

    Google Scholar 

  38. Bacco, M., Delmastro, F., Ferro, E., Gotta, A.: Environmental monitoring for smart cities. IEEE Sens. J. 17, 7767–7774 (2017)

    CrossRef  Google Scholar 

  39. Resch, B.: People as sensors and collective sensing-contextual observations complementing geo-sensor network measurements. In: Progress in Location-based Services, pp. 391–406. Springer (2013)

    Google Scholar 

  40. Ngai, E.C.-H., Xiong, J.: Adaptive collaborative sensing using mobile phones and stationary sensors. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems and Networks Workshops (DSN-W), pp. 280–285 (2011)

    Google Scholar 

  41. Weinhardt, C., Kloker, S., Hinz, O., van der Aalst, W.M.P.: Citizen science in information systems research. Bus. Inf. Syst. Eng. 62(4), 273–277 (2020). https://doi.org/10.1007/s12599-020-00663-y

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Stöckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Stöckel, B., Kloker, S., Weinhardt, C., Dann, D. (2021). Quantity Over Quality? – A Framework for Combining Mobile Crowd Sensing and High Quality Sensing. In: Ahlemann, F., Schütte, R., Stieglitz, S. (eds) Innovation Through Information Systems. WI 2021. Lecture Notes in Information Systems and Organisation, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-86800-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86800-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86799-7

  • Online ISBN: 978-3-030-86800-0

  • eBook Packages: Computer ScienceComputer Science (R0)