Skip to main content

Iterated Conditionals and Characterization of P-Entailment

  • Conference paper
  • First Online:
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12897))

Abstract

In this paper we deepen, in the setting of coherence, some results obtained in recent papers on the notion of p-entailment of Adams and its relationship with conjoined and iterated conditionals. We recall that conjoined and iterated conditionals are suitably defined in the framework of conditional random quantities. Given a family \(\mathcal {F}\) of n conditional events \(\{E_{1}|H_{1},\ldots , E_{n}|H_{n}\}\) we denote by \(\mathcal {C}(\mathcal {F})=(E_{1}|H_{1})\wedge \cdots \wedge (E_{n}|H_{n})\) the conjunction of the conditional events in \(\mathcal F\). We introduce the iterated conditional \(\mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\), where \(\mathcal {F}_{1}\) and \(\mathcal {F}_{2}\) are two finite families of conditional events, by showing that the prevision of \(\mathcal {C}(\mathcal {F}_{2})\wedge \mathcal {C}(\mathcal {F}_{1})\) is the product of the prevision of \(\mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\) and the prevision of \(\mathcal {C}(\mathcal {F}_{1})\). Likewise the well known equality \((A\wedge H)|H=A|H\), we show that \( (\mathcal {C}(\mathcal {F}_{2})\wedge \mathcal {C}(\mathcal {F}_{1}))|\mathcal {C}(\mathcal {F}_{1})= \mathcal {C}(\mathcal {F}_{2})|\mathcal {C}(\mathcal {F}_{1})\). Then, we consider the case \(\mathcal {F}_{1}=\mathcal {F}_{2}=\mathcal {F}\) and we verify for the prevision \(\mu \) of \(\mathcal {C}(\mathcal F)|\mathcal {C}(\mathcal {F})\) that the unique coherent assessment is \(\mu =1\) and, as a consequence, \(\mathcal {C}(\mathcal {F})|\mathcal {C}(\mathcal {F})\) coincides with the constant 1. Finally, by assuming \(\mathcal {F}\) p-consistent, we deepen some previous characterizations of p-entailment by showing that \(\mathcal {F}\) p-entails a conditional event \(E_{n+1}|H_{n+1}\) if and only if the iterated conditional \((E_{n+1}|H_{n+1})\,|\,\mathcal {C}(\mathcal {F})\) is constant and equal to 1. We illustrate this characterization by an example related with weak transitivity.

A. Gilio and G. Sanfilippo—Both authors contributed equally to the article and are listed alphabetically.

A. Gilio—Retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, E.W.: The Logic of Conditionals. Reidel, Dordrecht (1975)

    Book  Google Scholar 

  2. Benferhat, S., Dubois, D., Prade, H.: Nonmonotonic reasoning, conditional objects and possibility theory. Artif. Intell. 92, 259–276 (1997). https://doi.org/10.1016/S0004-3702(97)00012-X

    Article  MathSciNet  MATH  Google Scholar 

  3. Biazzo, V., Gilio, A., Lukasiewicz, T., Sanfilippo, G.: Probabilistic logic under coherence: complexity and algorithms. Ann. Math. Artif. Intell. 45(1–2), 35–81 (2005). https://doi.org/10.1007/s10472-005-9005-y

    Article  MathSciNet  MATH  Google Scholar 

  4. Calabrese, P.: An algebraic synthesis of the foundations of logic and probability. Inf. Sci. 42(3), 187–237 (1987). https://doi.org/10.1016/0020-0255(87)90023-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Calabrese, P.: Logic and Conditional Probability: A Synthesis. College Publications (2017)

    Google Scholar 

  6. Ciucci, D., Dubois, D.: Relationships between connectives in three-valued logics. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) IPMU 2012. CCIS, vol. 297, pp. 633–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31709-5_64

    Chapter  Google Scholar 

  7. Ciucci, D., Dubois, D.: A map of dependencies among three-valued logics. Inf. Sci. 250, 162–177 (2013). https://doi.org/10.1016/j.ins.2013.06.040

    Article  MathSciNet  MATH  Google Scholar 

  8. Coletti, G., Petturiti, D., Vantaggi, B.: Fuzzy memberships as likelihood functions in a possibilistic framework. Int. J. Approximate Reasoning 88, 547–566 (2017). https://doi.org/10.1016/j.ijar.2016.11.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Coletti, G., Petturiti, D., Vantaggi, B.: A Dutch book coherence condition for conditional completely alternating Choquet expectations. Bollettino dell’Unione Matematica Italiana 13(4), 585–593 (2020). https://doi.org/10.1007/s40574-020-00251-8

    Article  MathSciNet  MATH  Google Scholar 

  10. Coletti, G., Scozzafava, R.: Conditional probability, fuzzy sets, and possibility: a unifying view. Fuzzy Sets Syst. 144, 227–249 (2004)

    Article  MathSciNet  Google Scholar 

  11. Coletti, G., Scozzafava, R., Vantaggi, B.: Coherent conditional probability, fuzzy inclusion and default rules. In: Yager, R., Abbasov, A.M., Reformat, M.Z., Shahbazova, S.N. (eds.) Soft Computing: State of the Art Theory and Novel Applications, pp. 193–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Coletti, G., Scozzafava, R., Vantaggi, B.: Possibilistic and probabilistic logic under coherence: Default reasoning and System P. Mathematica Slovaca 65(4), 863–890 (2015). https://doi.org/10.1515/ms-2015-0060

    Article  MathSciNet  MATH  Google Scholar 

  13. Coletti, G., Vantaggi, B.: Coherent conditional plausibility: a tool for handling fuzziness and uncertainty under partial information. In: Collan, M., Kacprzyk, J. (eds.) Soft Computing Applications for Group Decision-making and Consensus Modeling. SFSC, vol. 357, pp. 129–152. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-60207-3_9

    Chapter  Google Scholar 

  14. Cruz, N.: Deduction from uncertain premises? In: Elqayam, S., Douven, I., Evans, J.S.B.T., Cruz, N. (eds.) Logic and Uncertainty in the Human Mind: A Tribute to David E. Over, pp. 27–41. Routledge, Oxon (2020). https://doi.org/10.4324/9781315111902-3

  15. Douven, I., Dietz, R.: A puzzle about Stalnaker’s hypothesis. Topoi, pp. 31–37 (2011). https://doi.org/10.1007/s11245-010-9082-3

  16. Douven, I., Elqayam, S., Singmann, H., van Wijnbergen-Huitink, J.: Conditionals and inferential connections: toward a new semantics. Thinking Reasoning, pp. 1–41 (2019). https://doi.org/10.1080/13546783.2019.1619623

  17. Dubois, D., Faux, F., Prade, H.: Prejudice in uncertain information merging: pushing the fusion paradigm of evidence theory further. Int. J. Approximate Reasoning 121, 1–22 (2020). https://doi.org/10.1016/j.ijar.2020.02.012

    Article  MathSciNet  MATH  Google Scholar 

  18. Dubois, D., Liu, W., Ma, J., Prade, H.: The basic principles of uncertain information fusion. An organised review of merging rules in different representation frameworks. Inf. Fusion 32, 12–39 (2016). https://doi.org/10.1016/j.inffus.2016.02.006

  19. Dujmović, J.J., Legind Larsen, H.: Generalized conjunction/disjunction. Int. J. Approximate Reasoning 46(3), 423–446 (2007). https://doi.org/10.1016/j.ijar.2006.12.011, special Section: Aggregation Operators

  20. de Finetti, B.: La logique de la probabilité. In: Actes du Congrès International de Philosophie Scientifique, Paris, 1935, pp. IV 1-IV 9 (1936)

    Google Scholar 

  21. Flaminio, T., Godo, L., Hosni, H.: Boolean algebras of conditionals, probability and logic. Artif. Intell. 286, 103347 (2020). https://doi.org/10.1016/j.artint.2020.103347

  22. Freund, M., Lehmann, D., Morris, P.: Rationality, transitivity, and contraposition. Artif. Intell. 52(2), 191–203 (1991)

    Article  MathSciNet  Google Scholar 

  23. Gilio, A.: Probabilistic reasoning under coherence in System P. Annals Math. Artif. Intell. 34, 5–34 (2002). https://doi.org/10.1023/A:101442261

    Article  MathSciNet  MATH  Google Scholar 

  24. Gilio, A., Over, D.E., Pfeifer, N., Sanfilippo, G.: Centering and Compound Conditionals Under Coherence. In: Ferraro, M.B., Giordani, P., Vantaggi, B., Gagolewski, M., Gil, M.Á., Grzegorzewski, P., Hryniewicz, O. (eds.) Soft Methods for Data Science. AISC, vol. 456, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42972-4_32

  25. Gilio, A., Pfeifer, N., Sanfilippo, G.: Transitivity in coherence-based probability logic. J. Appl. Logic 14, 46–64 (2016). https://doi.org/10.1016/j.jal.2015.09.012

    Article  MathSciNet  MATH  Google Scholar 

  26. Gilio, A., Pfeifer, N., Sanfilippo, G.: Probabilistic entailment and iterated conditionals. In: Elqayam, S., Douven, I., Evans, J.S.B.T., Cruz, N. (eds.) Logic and Uncertainty in the Human Mind: a Tribute to David E. Over, pp. 71–101. Routledge, Oxon (2020). https://doi.org/10.4324/9781315111902-6

  27. Gilio, A., Sanfilippo, G.: Conditional random quantities and iterated conditioning in the setting of coherence. In: van der Gaag, L.C. (ed.) ECSQARU 2013. LNCS (LNAI), vol. 7958, pp. 218–229. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39091-3_19

    Chapter  MATH  Google Scholar 

  28. Gilio, A., Sanfilippo, G.: Conjunction, disjunction and iterated conditioning of conditional events. In: Kruse, R., Berthold, M., Moewes, C., Gil, M., Grzegorzewski, P., Hryniewicz, O. (eds.) Synergies of Soft Computing and Statistics for Intelligent Data Analysis. AISC, vol. 190, pp. 399–407. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33042-1_43

  29. Gilio, A., Sanfilippo, G.: Probabilistic entailment in the setting of coherence: the role of quasi conjunction and inclusion relation. Int. J. Approximate Reasoning 54(4), 513–525 (2013). https://doi.org/10.1016/j.ijar.2012.11.001

    Article  MathSciNet  MATH  Google Scholar 

  30. Gilio, A., Sanfilippo, G.: Quasi conjunction, quasi disjunction, t-norms and t-conorms: probabilistic aspects. Inf. Sci. 245, 146–167 (2013). https://doi.org/10.1016/j.ins.2013.03.019

    Article  MathSciNet  MATH  Google Scholar 

  31. Gilio, A., Sanfilippo, G.: Conditional random quantities and compounds of conditionals. Studia Logica 102(4), 709–729 (2013). https://doi.org/10.1007/s11225-013-9511-6

    Article  MathSciNet  MATH  Google Scholar 

  32. Gilio, A., Sanfilippo, G.: Conjunction and disjunction among conditional events. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017. LNCS (LNAI), vol. 10351, pp. 85–96. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60045-1_11

    Chapter  Google Scholar 

  33. Gilio, A., Sanfilippo, G.: Generalized logical operations among conditional events. Appl. Intell. 49(1), 79–102 (2018). https://doi.org/10.1007/s10489-018-1229-8

    Article  Google Scholar 

  34. Gilio, A., Sanfilippo, G.: Algebraic aspects and coherence conditions for conjoined and disjoined conditionals. Int. J. Approximate Reasoning 126, 98–123 (2020). https://doi.org/10.1016/j.ijar.2020.08.004

    Article  MathSciNet  MATH  Google Scholar 

  35. Gilio, A., Sanfilippo, G.: Compound conditionals, Fréchet-Hoeffding bounds, and Frank t-norms. Int. J. Approximate Reasoning 136, 168–200 (2021). https://doi.org/10.1016/j.ijar.2021.06.006

    Article  MATH  Google Scholar 

  36. Gilio, A., Sanfilippo, G.: On compound and iterated conditionals. Argumenta 6 2(2021), 241–266 (2021). https://doi.org/10.14275/2465-2334/202112.gil

  37. Goodman, I.R., Nguyen, H.T., Walker, E.A.: Conditional Inference and Logic for Intelligent Systems: A Theory of Measure-Free Conditioning. North-Holland (1991)

    Google Scholar 

  38. Grabisch, M., Marichal, J., Mesiar, R., Pap, E.: Aggregation functions. Cambridge University Press (2009)

    Google Scholar 

  39. Kaufmann, S.: Conditionals right and left: probabilities for the whole family. J. Philosophical Logic 38, 1–53 (2009). https://doi.org/10.1007/s10992-008-9088-0

    Article  MathSciNet  MATH  Google Scholar 

  40. Lewis, D.: Counterfactuals. Blackwell, Oxford (1973)

    MATH  Google Scholar 

  41. Lewis, D.: Probabilities of conditionals and conditional probabilities. Philos. Rev. 85(3), 297–315 (1976)

    Article  Google Scholar 

  42. McGee, V.: Conditional probabilities and compounds of conditionals. Philos. Rev. 98(4), 485–541 (1989). https://doi.org/10.2307/2185116

    Article  Google Scholar 

  43. Nguyen, H.T., Walker, E.A.: A history and introduction to the algebra of conditional events and probability logic. IEEE Trans. Syst. Man Cybernetics 24(12), 1671–1675 (1994). https://doi.org/10.1109/21.328924

    Article  MathSciNet  MATH  Google Scholar 

  44. Petturiti, D., Vantaggi, B.: Modeling agent’s conditional preferences under objective ambiguity in dempster-shafer theory. Int. J. Approximate Reasoning 119, 151–176 (2020). https://doi.org/10.1016/j.ijar.2019.12.019

    Article  MathSciNet  MATH  Google Scholar 

  45. Sanfilippo, G.: Lower and upper probability bounds for some conjunctions of two conditional events. In: Ciucci, D., Pasi, G., Vantaggi, B. (eds.) SUM 2018. LNCS (LNAI), vol. 11142, pp. 260–275. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00461-3_18

  46. Sanfilippo, G., Gilio, A., Over, D., Pfeifer, N.: Probabilities of conditionals and previsions of iterated conditionals. Int. J. Approximate Reasoning 121, 150–173 (2020). https://doi.org/10.1016/j.ijar.2020.03.001

    Article  MathSciNet  MATH  Google Scholar 

  47. Sanfilippo, G., Pfeifer, N., Gilio, A.: Generalized probabilistic modus ponens. In: Antonucci, A., Cholvy, L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 480–490. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3_43

  48. Sanfilippo, G., Pfeifer, N., Over, D., Gilio, A.: Probabilistic inferences from conjoined to iterated conditionals. Int. J. Approximate Reasoning 93(Supplement C), 103–118 (2018). https://doi.org/10.1016/j.ijar.2017.10.027

  49. Sezgin, M., Kern-Isberner, G., Rott, H.: Inductive reasoning with difference-making conditionals. In: 18th International Workshop on Non-Monotonic Reasoning (NMR 2020 Workshop Notes), pp. 83–92 (2020)

    Google Scholar 

Download references

Acknowledgements

We thank the four anonymous reviewers for their useful comments and suggestions. G. Sanfilippo has been partially supported by the INdAM–GNAMPA Project 2020 Grant U-UFMBAZ-2020-000819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Sanfilippo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilio, A., Sanfilippo, G. (2021). Iterated Conditionals and Characterization of P-Entailment. In: Vejnarová, J., Wilson, N. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2021. Lecture Notes in Computer Science(), vol 12897. Springer, Cham. https://doi.org/10.1007/978-3-030-86772-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86772-0_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86771-3

  • Online ISBN: 978-3-030-86772-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics