Skip to main content

Abstract

Fatigue damage is associated with heat release leading to material self-heating. The present study deals with the measurement of mechanical dissipation from temperature measurements by infrared (IR) thermography during a fatigue test with varying stress amplitude. The experiment was performed in two steps on an additively manufactured steel specimen. First, specific acquisition conditions of the thermal response were used to remove the cyclic fluctuation due to thermoelastic coupling. Second, heat source reconstruction was applied to evaluate the calorific origin of the self-heating during the test. A simplified version of the heat diffusion equation was used assuming a uniform distribution of mechanical dissipation within the specimen. The relationship between stress amplitude and mechanical dissipation was identified without the need for a steady thermal regime at constant load amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stromeyer, C.E.: The determination of fatigue limits under alternating stress conditions. Proc Royal Soc London. 90, 411–425 (1914)

    Google Scholar 

  2. Luong, M.P.: Infrared thermographic scanning of fatigue in metals. Nucl. Eng. Des. 158, 363–376 (1995)

    Google Scholar 

  3. Luong, M.P.: Fatigue limit evaluation of metals using an infrared thermographic technique. Mech. Mater. 28, 155–163 (1998)

    Google Scholar 

  4. Geraci A.L., La Rosa G., Risitano A., Grech M.: Determination of the fatigue limit of an austempered ductile iron using thermal infrared imagery, In: Fedosov E.A. (ed.) Proceedings of SPIE. Digital Photogrammetry and Remote Sensing '95, Moscow, Russia, June 25–30, 1995, Vol. 2646, pp. 306–317 (1995)

    Google Scholar 

  5. La Rosa, G., Risitano, A.: Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. Int. J. Fatigue. 22, 65–73 (2000)

    Google Scholar 

  6. Huang, J., Pastor, M.L., Garnier, C., Gong, X.: Rapid evaluation of fatigue limit on thermographic data analysis. Int. J. Fatigue. 104, 293–301 (2017)

    Google Scholar 

  7. de Finis, R., Palumbo, D., da Silva, M.M., Galietti, U.: Is the temperature plateau of a self-heating test a robust parameter to investigate the fatigue limit of steels with thermography? Fatigue Fract. Eng. Mater. Struct. 41, 917–934 (2018)

    Google Scholar 

  8. Doudard, C., Calloch, S., Hild, F., Cugy, P., Galtier, A.: Identification of the scatter in high cycle fatigue from temperature measurements. Comptes Rendus Mécanique. 332, 795–801 (2004)

    Google Scholar 

  9. Doudard, C., Calloch, S., Cugy, P., Galtier, A., Hild, F.: A probabilistic two-scale model for high cycle fatigue life predictions. Fatigue Fract. Eng. Mater. Struct. 28, 279–288 (2005)

    Google Scholar 

  10. Munier, R., Doudard, C., Calloch, S., Weber, B.: Determination of high cycle fatigue properties of a wide range of steel sheet grades from self-heating measurements. Int. J. Fatigue. 63, 46–61 (2014)

    Google Scholar 

  11. Munier, R., Doudard, C., Calloch, S., Weber, B.: Identification of the micro-plasticity mechanisms at the origin of self-heating under cyclic loading with low stress amplitude. Int. J. Fatigue. 103, 122–135 (2017)

    Google Scholar 

  12. De Finis, R., Palumbo, D., Ancona, F., Galietti, U.: Fatigue limit evaluation of various martensitic stainless steels with new robust thermographic data analysis. Int. J. Fatigue. 74, 88–96 (2015)

    Google Scholar 

  13. Cao, Y.F., Moumni, Z., Zhu, J.H., Zhang, Y.H., You, Y.J., Zhang, W.H.: Comparative investigation of the fatigue limit of additive-manufactured and rolled 316 steel based on self-heating approach. Eng. Fract. Mech. 223, 106746 (2020)

    Google Scholar 

  14. Shiozawa, D., Inagawa, T., Washio, T., Sakagami, T.: Fatigue limit estimation of stainless steels with new dissipated energy data analysis. Procedia Struct Integr. 2, 2091–2096 (2016)

    Google Scholar 

  15. Stankovicova, Z., Dekys, V., Uhricik, M., Novak, P., Strnadel, B.: Fatigue limit estimation using IR camera. In: Vasko, M., et al. (eds.) XXII Slovak-Polish Scientific Conference on Machine Modelling and Simulations 2017 (MMS 2017), p. 05021. EDP Sciences, Les Ulis (2018). https://doi.org/10.1051/matecconf/201815705021

    Google Scholar 

  16. Guo, S.F., Liu, X.S., Zhang, H.X., Yan, Z.F., Zhang, Z.D., Fang, H.Y.: Thermographic study of AZ31B magnesium alloy under cyclic loading: temperature evolution analysis and fatigue limit estimation. Materials. 13, 5209 (2020)

    Google Scholar 

  17. Guo, S.F., Liu, X.S., Zhang, H.X., Yan, Z.F., Fang, H.Y.: Fatigue limit evaluation of AZ31B magnesium alloy based on temperature distribution analysis. Metals. 10, 1331 (2020)

    Google Scholar 

  18. Akai A., Shiozawa D., Sakagami T., Fatigue limit estimation of titanium alloy Ti-6Al-4V with infrared thermography, In: Bison P., Burleigh D. (eds) Proceedings of SPIE. Thermosense: Thermal Infrared Applications XXXIX, Anaheim, CA, April 10–13, 2017, Vol. 10214, 102141J (2017)

    Google Scholar 

  19. De Finis, R., Palumbo, D., Galietti, U.: Fatigue damage analysis of composite materials using thermography-based techniques. Procedia Struct Integr. 18, 781–791 (2019)

    Google Scholar 

  20. Palumbo, D., De Finis, R., Demelio, P.G., Galietti, U.: A new rapid thermographic method to assess the fatigue limit in GFRP composites. Compos Part B-Eng. 103, 60–67 (2016)

    Google Scholar 

  21. Douellou, C., Balandraud, X., Duc, E., Verquin, B., Lefebvre, F., Sar, F.: Rapid characterization of the fatigue limit of additive-manufactured maraging steels using infrared measurements. Addit. Manuf. 35, 101310 (2020)

    Google Scholar 

  22. Douellou, C., Balandraud, X., Duc, E.: Fatigue characterization of 3D-printed maraging steel by infrared thermography. In: Kramer, S., et al. (eds.) Mechanics of Additive and Advanced Manufacturing, Vol 8. Conference Proceedings of the Society for Experimental Mechanics Series, pp. 5–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-95083-9_2

    Google Scholar 

  23. Douellou, C., Balandraud, X., Duc, E., Verquin, B., Lefebvre, F., Sar, F.: Fast fatigue characterization by infrared thermography for additive manufacturing. Procedia Struct Integr. 19, 90–100 (2019)

    Google Scholar 

  24. Chrysochoos, A., Peyroux, R.: Experimental analysis and numerical simulation of thermomechanical couplings in solid materials. Revue Générale de Thermique. 37, 582–606 (1998)

    Google Scholar 

  25. Boulanger, T., Chrysochoos, A., Mabru, C., Galtier, A.: Calorimetric analysis of dissipative and thermoelastic effects associated with the fatigue behavior of steels. Int. J. Fatigue. 26, 221–229 (2004)

    Google Scholar 

  26. Chrysochoos, A., Louche, H.: An infrared image processing to analyse the calorific effects accompanying strain localization. Int. J. Eng. Sci. 38, 1759–1788 (2000)

    Google Scholar 

  27. Jongchansitto, P., Douellou, C., Preechawuttipong, I., Balandraud, X.: Comparison between 0D and 1D approaches for mechanical dissipation measurement during fatigue tests. Strain. 55, e12307 (2019)

    Google Scholar 

  28. Delpueyo, D., Balandraud, X., Grediac, M., Stanciu, S., Cimpoesu, N.: A specific device for enhanced measurement of mechanical dissipation in specimens subjected to long-term tensile tests in fatigue. Strain. 54, e12252 (2018)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Région Auvergne-Rhônes-Alpes for the support in this study (Project: IRICE Fabrication additive, number: 18 009727 01-59941, operation: P088O005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Balandraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douellou, C., Gravier, A., Balandraud, X., Duc, E. (2022). Heat Source Reconstruction Applied to Fatigue Characterization Under Varying Stress Amplitude. In: Kramer, S.L., Tighe, R., Lin, MT., Furlong, C., Hwang, CH. (eds) Thermomechanics & Infrared Imaging, Inverse Problem Methodologies, Mechanics of Additive & Advanced Manufactured Materials, and Advancements in Optical Methods & Digital Image Correlation, Volume 4. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-86745-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86745-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86744-7

  • Online ISBN: 978-3-030-86745-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics