Skip to main content

Metabolic Reprogramming and Infectious Diseases

  • Chapter
  • First Online:
Essential Aspects of Immunometabolism in Health and Disease

Abstract

Cellular organization is possible through metabolic processes that ensure the construction of biomass and energy supply. Central metabolic pathways use sensors to monitor nutrient availability and environmental changes. Metabolic sensors orchestrate environment-driven metabolic adaptations according to the cellular condition. Although the role of metabolism in the immune response has been established for many decades, only in recent years have researchers turned their interest to investigate metabolic changes in immune cells, setting the field of immunometabolism. Early in vitro studies were instrumental in uncovering mechanisms that induce a metabolic reprogramming required for an effective immune response, mainly in macrophages and dendritic cells. Also, in vitro studies have shown a metabolic shift during T cell activation and proliferation. However, such approaches may not reflect the metabolic complexity within an integrated organism with changes in partial oxygen pressure, pH, inflammation and nutrient gradient. Besides that, metabolic changes can affect both microenvironments and promote systemic inter-organ communication. Therefore, the immunometabolic study at specific sites is crucial to understand the outcome of infections, tumors, non-infectious inflammation and tissue repair. In this chapter, we will address the metabolic reprogramming in tissue-specific immune cells during host infection. At first, we will introduce the functioning of the immune system in barrier tissues that are the gateway to pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACL:

ATP-dependent Citrate Lyase

AMPK:

AMP-activated protein kinase

AMPs:

Antimicrobial peptides

AMs:

Alveolar macrophages

Arg -1:

Arginase-1

ASN:

Asparagine

BCG:

Baccillus Calmette-Guérin

COVID-19:

Coronavirus disease 2019

DCs:

Dendritic cells

FAS:

Fatty Acid Synthesis

GALT:

Gut-Associated Lymphoid Tissue

GAS:

Group A Streptococcus

GLUT1:

Glucose Transporter 1

HIF:

αHypoxia-Inducible Factor 1-Alpha

HK2:

Hexokinase 2

IBPs:

Intracellular Bacterial Pathogens

IFNs:

Interferons

IgA:

Immunoglobulin A

IgG:

Immunoglobulin G

IL:

Interleukin

ILCs:

Innate lymphoid cells

ILFs:

Isolated Lymphoid Follicles

JE:

Junctional epithelium

LPS:

Lipopolysaccharide

MALT:

Mucosa-associated lymphoid tissue

MHC:

Major Histocompatibility Complex

MIF:

Migration Inhibitory Factor

MS:

Multiple Sclerosis

mTOR:

Mammalian Target of Rapamycin

mTORC1:

Mammalian Target of Rapamycin complex 1

MV:

Measles Virus

NETs:

Neutrophil Extracellular Traps

NK:

Natural killer

NLRP3:

NLR family pyrin domain containing 3

NO:

Nitric Oxide

Nrf2:

Nuclear Factor erythroid-derived 2

OAA:

Oxaloacetate

OXPHOS:

Oxidative Phosphorylation

PAMPs:

PathogenAssociated Molecular Patterns

PDK1 :

Phosphoinositide-Dependent Kinase 1

PFK1 :

Phosphofructokinase 1

PGE2:

Prostaglandin E2

PI3K :

Phosphoinositide-3 Kinase

pIgA:

Polymeric Immunoglobulin A

pIgR:

Polymeric immunoglobulin receptor

PIP3 :

Phosphatidylinositol-3,4,5-Trisphosphate

PKM2:

Pyruvate Kinase M2

PPARδ:

Peroxisome Proliferator-Activated Receptor Gamma

PPP:

Pentose Phosphate Pathway

PPs:

Peyer’s Patches

PRRs:

Pattern Recognition Receptors

ROS :

Reactive Oxygen Species

SARS-CoV-2:

Respiratory Syndrome Coronavirus 2

SH2:

Src Homology 2

TAC:

Tricarboxylic Acid Cycle

TGF-β:

Transforming growth factor-β

Th:

T helper

TLRs:

Toll-like receptors

Tr1:

Type 1 Regulatory T cells

Tregs:

Regulatory T cells

TRMs :

Tissue-Resident Macrophages

UTIs:

Urinary tract infections

α-KG:

α-Ketoglutarate

References

  1. Abraham SN, ST John A L (2010) Mast cell-orchestrated immunity to pathogens. Nat Rev Immunol 10:440–452

    Google Scholar 

  2. Agace WW, Hedges SR, Ceska M, Svanborg C (1993) Interleukin-8 and the neutrophil response to mucosal gram-negative infection. J Clin Invest 92:780–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Asare R, Kwaik YA (2010) Exploitation of host cell biology and evasion of immunity by francisella tularensis. Front Microbiol 1:145

    CAS  PubMed  Google Scholar 

  4. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, Reckamp K, Dohadwala M, Sharma S, Dubinett SM (2005) Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175:1483–1490

    Article  CAS  PubMed  Google Scholar 

  5. Barlow JL, McKenzie ANJ (2019) Innate Lymphoid Cells of the Lung. Annu Rev Physiol 81:429–452

    Article  CAS  PubMed  Google Scholar 

  6. Baruch M, Belotserkovsky I, Hertzog BB, Ravins M, Dov E, McIver KS, le Breton YS, Zhou Y, Cheng CY, Hanski E (2014) An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 156:97–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Belkaid Y, Hand TW (2014) Role of the microbiota in immunity and inflammation. Cell 157:121–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Belkaid Y, Harrison OJ (2017) Homeostatic Immunity and the Microbiota. Immunity 46:562–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Billig S, Schneefeld M, Huber C, Grassl GA, Eisenreich W, Bange FC (2017) Lactate oxidation facilitates growth of Mycobacterium tuberculosis in human macrophages. Sci Rep 7:6484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Billips BK, Schaeffer AJ, Klumpp DJ (2008) Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder. Infect Immun 76:3891–3900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vazquez G, Yurchenko E, Raissi TC, van der Windt GJ, Viollet B, Pearce EL, Pelletier J, Piccirillo CA, Krawczyk CM, Divangahi M, Jones RG (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42:41–54

    Article  CAS  PubMed  Google Scholar 

  12. Bomprezzi R (2015) Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: an overview. Ther Adv Neurol Disord 8:20–30

    Article  CAS  Google Scholar 

  13. Bowden SD, Rowley G, Hinton JC, Thompson A (2009) Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 77:3117–3126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bruck J, Dringen R, Amasuno A, Pau-Charles I, Ghoreschi K (2018) A review of the mechanisms of action of dimethylfumarate in the treatment of psoriasis. Exp Dermatol 27:611–624

    Article  PubMed  CAS  Google Scholar 

  15. Buchmuller-Rouiller Y, Mauel J (1987) Impairment of the oxidative metabolism of mouse peritoneal macrophages by intracellular Leishmania spp. Infect Immun 55:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, Turay AM, Frauwirth KA (2010) Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 185:1037–1044

    Article  CAS  PubMed  Google Scholar 

  17. Chan, C. Y., ST John AL, Abraham SN (2013) Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 38:349–359

    Article  CAS  Google Scholar 

  18. Codo AC, Davanzo GG, de Brito Monteiro L, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CA, Crunfli F, Restrepo JL (2020) Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1alpha/Glycolysis-Dependent Axis. Cell Metab 32:498–499

    Google Scholar 

  19. Cremer TJ, Butchar JP, Tridandapani S (2011) Francisella Subverts Innate Immune Signaling: Focus On PI3K/Akt. Front Microbiol 5:13

    Article  PubMed  CAS  Google Scholar 

  20. Czyż DM, Willett JW, Crosson S (2017) Brucella abortus Induces a Warburg Shift in Host Metabolism That Is Linked to Enhanced Intracellular Survival of the Pathogen. J Bacteriol, 199

    Google Scholar 

  21. Delgado T, Sanchez EL, Camarda R, Lagunoff M. (2012)Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection. PLoS Pathog, 8 e1002866.

    Google Scholar 

  22. Delima AJ, van Dyke TE (2003) Origin and function of the cellular components in gingival crevice fluid. Periodontol 2000(31):55–76

    Article  Google Scholar 

  23. Descoteaux A, Matlashewski G (1989) c-fos and tumor necrosis factor gene expression in Leishmania donovani-infected macrophages. Mol Cell Biol 9:5223–5227

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Deshmukh P, Unni S, Krishnappa G, Padmanabhan B (2017) The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys Rev 9:41–56

    Article  CAS  PubMed  Google Scholar 

  25. Donnelly RP, Finlay DK (2015) Glucose, glycolysis and lymphocyte responses. Mol Immunol 68:513–519

    Article  CAS  PubMed  Google Scholar 

  26. Dutzan N, Abusleme L, Bridgeman H, Greenwell-Wild T, Zangerle-Murray T, Fife ME, Bouladoux N, Linley H, Brenchley L, Wemyss K, Calderon G, Hong BY, Break TJ, Bowdish DM, Lionakis MS, Jones SA, Trinchieri G, Diaz PI, Belkaid Y, Konkel JE, Moutsopoulos NM (2017) On-going Mechanical Damage from Mastication Drives Homeostatic Th17 Cell Responses at the Oral Barrier. Immunity 46:133–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eisenreich W, Heesemann J, Rudel T, Goebel W (2013) Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 3:24

    Article  PubMed  PubMed Central  Google Scholar 

  28. Eisenreich W, Rudel T, Heesemann J, Goebel W (2017) To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 7:316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. ESCOLL, P., SONG, O. R., VIANA, F., STEINER, B., LAGACHE, T., OLIVO-MARIN, J. C., IMPENS, F., BRODIN, P., HILBI, H. & BUCHRIESER, C. 2017. Legionella pneumophila Modulates Mitochondrial Dynamics to Trigger Metabolic Repurposing of Infected Macrophages. Cell Host Microbe, 22, 302–316 e7.

    Google Scholar 

  30. Fonseca DM, Hand TW, Han SJ, Gerner MY, GLATMAN ZARETSKY, A., BYRD, A. L., HARRISON, O. J., ORTIZ, A. M., QUINONES, M., TRINCHIERI, G., BRENCHLEY, J. M., BRODSKY, I. E., GERMAIN, R. N., RANDOLPH, G. J. & BELKAID, Y. (2015) Microbiota-Dependent Sequelae of Acute Infection Compromise Tissue-Specific Immunity. Cell 163:354–366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. FRANKE, T. F. 2008. Intracellular signaling by Akt: bound to be specific. Sci Signal, 1, pe29.

    Google Scholar 

  32. Gallo RL, Hooper LV (2012) Epithelial antimicrobial defence of the skin and intestine. Nat Rev Immunol 12:503–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V, Cesses P, Garnier L, Pouzolles M, Brulin B, Bruschi M, Harcus Y, Zimmermann VS, Taylor N, Maizels RM, Jay P (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529:226–230

    Article  CAS  PubMed  Google Scholar 

  34. Gerriets VA, Rathmell JC (2012) Metabolic pathways in T cell fate and function. Trends Immunol 33:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. GILLMAIER, N., GOTZ, A., SCHULZ, A., EISENREICH, W. & GOEBEL, W. 2012. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes. PLoS One, 7, e52378.

    Google Scholar 

  36. Grist M, Chakraborty J (1994) Identification of a mucin layer in the urinary bladder. Urology 44:26–33

    Article  CAS  PubMed  Google Scholar 

  37. HAN, S. J., GLATMAN ZARETSKY, A., ANDRADE-OLIVEIRA, V., COLLINS, N., DZUTSEV, A., SHAIK, J., MORAIS DA FONSECA, D., HARRISON, O. J., TAMOUTOUNOUR, S., BYRD, A. L., SMELKINSON, M., BOULADOUX, N., BLISKA, J. B., BRENCHLEY, J. M., BRODSKY, I. E. & BELKAID, Y. 2017. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection. Immunity, 47, 1154–1168 e6.

    Google Scholar 

  38. Haraoka M, Hang L, Frendeus B, Godaly G, Burdick M, Strieter R, Svanborg C (1999) Neutrophil recruitment and resistance to urinary tract infection. J Infect Dis 180:1220–1229

    Article  CAS  PubMed  Google Scholar 

  39. Hartmann H, Eltzschig HK, Wurz H, Hantke K, Rakin A, Yazdi AS, Matteoli G, Bohn E, Autenrieth IB, Karhausen J, Neumann D, Colgan SP, Kempf VA (2008) Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology 134:756–767

    Article  CAS  PubMed  Google Scholar 

  40. Hirota K, Turner JE, Villa M, Duarte JH, Demengeot J, Steinmetz OM, Stockinger B (2013) Plasticity of Th17 cells in Peyer’s patches is responsible for the induction of T cell-dependent IgA responses. Nat Immunol 14:372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. HOYTEMA VAN KONIJNENBURG, D. P., REIS, B. S., PEDICORD, V. A., FARACHE, J., VICTORA, G. D. & MUCIDA, D. 2017. Intestinal Epithelial and Intraepithelial T Cell Crosstalk Mediates a Dynamic Response to Infection. Cell, 171, 783–794 e13.

    Google Scholar 

  42. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169

    Article  CAS  PubMed  Google Scholar 

  43. Hunstad DA, Justice SS, Hung CS, Lauer SR, Hultgren SJ (2005) Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun 73:3999–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. IWASAKI, A. (2007) Mucosal dendritic cells. Annu Rev Immunol 25:381–418

    Article  CAS  Google Scholar 

  45. IWASAKI, A. (2010) Antiviral immune responses in the genital tract: clues for vaccines. Nat Rev Immunol 10:699–711

    Article  CAS  Google Scholar 

  46. Jacobs SR, Herman CE, Maciver NJ, Wofford JA, Wieman HL, Hammen JJ, Rathmell JC (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180:4476–4486

    Article  CAS  PubMed  Google Scholar 

  47. Jang M, Park R, Kim H, Namkoong S, Jo D, Huh YH, Jang IS, Lee JI, Park J (2018) AMPK contributes to autophagosome maturation and lysosomal fusion. Sci Rep 8:12637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Johansson-Lindbom B, Svensson M, Wurbel MA, Malissen B, Marquez G, Agace W (2003) Selective generation of gut tropic T cells in gut-associated lymphoid tissue (GALT): requirement for GALT dendritic cells and adjuvant. J Exp Med 198:963–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kayama H, Okumura R, Takeda K (2020) Interaction Between the Microbiota, Epithelia, and Immune Cells in the Intestine. Annu Rev Immunol 38:23–48

    Article  CAS  PubMed  Google Scholar 

  50. Kayama H, Takeda K (2020) Manipulation of epithelial integrity and mucosal immunity by host and microbiota-derived metabolites. Eur J Immunol 50:921–931

    Article  CAS  PubMed  Google Scholar 

  51. Kelly B, Tannahill GM, Murphy MP, O’Neill LA (2015) Metformin Inhibits the Production of Reactive Oxygen Species from NADH: Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1beta (IL-1beta) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages. J Biol Chem 290:20348–20359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. KERNIEN, J. F., JOHNSON, C. J. & NETT, J. E. 2017. Conserved Inhibition of Neutrophil Extracellular Trap Release by Clinical Candida albicans Biofilms. J Fungi (Basel), 3.

    Google Scholar 

  53. Konkel JE, Chen W (2011) Balancing acts: the role of TGF-beta in the mucosal immune system. Trends Mol Med 17:668–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kugler DG, Flomerfelt FA, Costa DL, Laky K, Kamenyeva O, Mittelstadt PR, Gress RE, Rosshart SP, Rehermann B, Ashwell JD, Sher A, Jankovic D (2016) Systemic toxoplasma infection triggers a long-term defect in the generation and function of naive T lymphocytes. J Exp Med 213:3041–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. LACERDA MARIANO, L. & INGERSOLL, M. A. (2020) The immune response to infection in the bladder. Nat Rev Urol 17:439–458

    Article  Google Scholar 

  56. Lapaque N, Hutchinson JL, Jones DC, Meresse S, Holden DW, Trowsdale J, Kelly AP (2009) Salmonella regulates polyubiquitination and surface expression of MHC class II antigens. Proc Natl Acad Sci U S A 106:14052–14057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Loftus RM, Finlay DK (2016) Immunometabolism: Cellular Metabolism Turns Immune Regulator. J Biol Chem 291:1–10

    Article  CAS  PubMed  Google Scholar 

  59. Luan HH, Medzhitov R (2016) Food Fight: Role of Itaconate and Other Metabolites in Antimicrobial Defense. Cell Metab 24:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    Article  CAS  PubMed  Google Scholar 

  61. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, Binz T, Wegner A, Tallam A, Rausell A, Buttini M, Linster CL, Medina E, Balling R, Hiller K (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110:7820–7825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mina MJ, Kula T, Leng Y, Li M, de Vries RD, Knip M, Siljander H, Rewers M, Choy DF, Wilson MS, Larman HB, Nelson AN, Griffin DE, de Swart RL, Elledge SJ (2019) Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science 366:599–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mitchell G, Cheng MI, Chen C, Nguyen BN, Whiteley AT, Kianian S, Cox JS, Green DR, McDonald KL, Portnoy DA (2018) Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci U S A 115:E210–E217

    Article  CAS  PubMed  Google Scholar 

  64. Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, Otipoby KL, Yokota A, Takeuchi H, Ricciardi-Castagnoli P, Rajewsky K, Adams DH, von Andrian UH (2006) Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells. Science 314:1157–1160

    Article  CAS  PubMed  Google Scholar 

  65. Mullineaux-Sanders C, Sanchez-Garrido J, Hopkins EGD, Shenoy AR, Barry R, Frankel G (2019) Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism. Nat Rev Microbiol 17:701–715

    Article  CAS  PubMed  Google Scholar 

  66. Murakami M, Ohtake T, Dorschner RA, Schittek B, Garbe C, Gallo RL (2002) Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin. J Invest Dermatol 119:1090–1095

    Article  CAS  PubMed  Google Scholar 

  67. Nagamatsu K, Hannan TJ, Guest RL, Kostakioti M, Hadjifrangiskou M, Binkley J, Dodson K, Raivio TL, Hultgren SJ (2015) Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci U S A 112:E871–E880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, Conlan S, Himmelfarb S, Byrd AL, Deming C, Quinones M, Brenchley JM, Kong HH, Tussiwand R, Murphy KM, Merad M, Segre JA, Belkaid Y (2015) Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. NETEA, M. G., JOOSTEN, L. A., LATZ, E., MILLS, K. H., NATOLI, G., STUNNENBERG, H. G., O'NEILL, L. A. & XAVIER, R. J. 2016. Trained immunity: A program of innate immune memory in health and disease. Science, 352, aaf1098.

    Google Scholar 

  71. NOVAKOVIC, B., HABIBI, E., WANG, S. Y., ARTS, R. J. W., DAVAR, R., MEGCHELENBRINK, W., KIM, B., KUZNETSOVA, T., KOX, M., ZWAAG, J., MATARESE, F., VAN HEERINGEN, S. J., JANSSEN-MEGENS, E. M., SHARIFI, N., WANG, C., KERAMATI, F., SCHOONENBERG, V., FLICEK, P., CLARKE, L., PICKKERS, P., HEATH, S., GUT, I., NETEA, M. G., MARTENS, J. H. A., LOGIE, C. & STUNNENBERG, H. G. 2016. beta-Glucan Reverses the Epigenetic State of LPS-Induced Immunological Tolerance. Cell, 167, 1354–1368 e14.

    Google Scholar 

  72. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731

    Article  CAS  PubMed  Google Scholar 

  73. OHNO, H. (2016) Intestinal M cells. J Biochem 159:151–160

    Article  CAS  Google Scholar 

  74. Olszak T, Neves JF, Dowds CM, Baker K, Glickman J, Davidson NO, Lin CS, Jobin C, Brand S, Sotlar K, Wada K, Katayama K, Nakajima A, Mizuguchi H, Kawasaki K, Nagata K, Muller W, Snapper SB, Schreiber S, Kaser A, Zeissig S, Blumberg RS (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Olszewski KL, Llinas M (2011) Central carbon metabolism of Plasmodium parasites. Mol Biochem Parasitol 175:95–103

    Article  CAS  PubMed  Google Scholar 

  76. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    Article  CAS  PubMed  Google Scholar 

  77. Petrova VN, Sawatsky B, Han AX, Laksono BM, Walz L, Parker E, Pieper K, Anderson CA, de Vries RD (2019) Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles. Sci Immunol, 4

    Google Scholar 

  78. Pizarro-Cerda J, Cossart P (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6:1026–1033

    Article  CAS  PubMed  Google Scholar 

  79. Ratner JJ, Thomas VL, Sanford BA, Forland M (1981) Bacteria-specific antibody in the urine of patients with acute pyelonephritis and cystitis. J Infect Dis 143:404–412

    Article  CAS  PubMed  Google Scholar 

  80. REINER, N. E. (1987) Parasite accessory cell interactions in murine leishmaniasis. I. Evasion and stimulus-dependent suppression of the macrophage interleukin 1 response by Leishmania donovani. J Immunol 138:1919–1925

    Google Scholar 

  81. Reiner NE, Ng W, McMaster WR (1987) Parasite-accessory cell interactions in murine leishmaniasis. II. Leishmania donovani suppresses macrophage expression of class I and class II major histocompatibility complex gene products. J Immunol 138:1926–1932

    CAS  PubMed  Google Scholar 

  82. Rice PJ, Adams EL, Ozment-Skelton T, Gonzalez AJ, Goldman MP, Lockhart BE, Barker LA, Breuel KF, Deponti WK, Kalbfleisch JH, Ensley HE, Brown GD, Gordon S, Williams DL (2005) Oral delivery and gastrointestinal absorption of soluble glucans stimulate increased resistance to infectious challenge. J Pharmacol Exp Ther 314:1079–1086

    Article  CAS  PubMed  Google Scholar 

  83. Rother M, Teixeira da Costa AR, Zietlow R, Meyer TF, Rudel T (2014) Modulation of Host Cell Metabolism by Chlamydia trachomatis. Microbiol Spectr, 7

    Google Scholar 

  84. Russell SL, Lamprecht DA, Mandizvo T, Jones TT, Naidoo V, Addicott KW, Moodley C, Ngcobo B, Crossman DK, Wells G, Steyn AJ (2019) Compromised Metabolic Reprogramming Is an Early Indicator of CD8(+) T Cell Dysfunction during Chronic Mycobacterium tuberculosis Infection. Cell Rep, 29 3564–3579 e5

    Google Scholar 

  85. Saeed S, Quintin J, Kerstens HH, Rao NA, Aghajanirefah A, Matarese F, Cheng SC, Ratter J, Berentsen K, van der Ent MA, Sharifi N, Janssen-Megens EM, ter Huurne M, Mandoli A, van Schaik T, Ng A, Burden F, Downes K, Frontini M, Kumar V, Giamarellos-Bourboulis EJ, Ouwehand WH, van der Meer JW, Joosten LA, Wijmenga C, Martens JH, Xavier RJ, Logie C, Netea MG, Stunnenberg HG (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345:1251086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Saluzzo S, Gorki AD, Rana BMJ, Martins R, Scanlon S, Starkl P, Lakovits K, Hladik A, Korosec A, Sharif O, Warszawska JM, Jolin H, Mesteri I, McKenzie ANJ, Knapp S (2017) First-Breath-Induced Type 2 Pathways Shape the Lung Immune Environment. Cell Rep 18:1893–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Sanchez EL, Lagunoff M (2015) Viral activation of cellular metabolism. Virology 479–480:609–618

    Article  PubMed  CAS  Google Scholar 

  88. Schiwon M, Weisheit C, Franken L, Gutweiler S, Dixit A, Meyer-Schwesinger C, Pohl JM, Maurice NJ, Thiebes S, Lorenz K, Quast T, Fuhrmann M, Baumgarten G, Lohse MJ, Opdenakker G, Bernhagen J, Bucala R, Panzer U, Kolanus W, Grone HJ, Garbi N, Kastenmuller W, Knolle PA, Kurts C, Engel DR (2014) Crosstalk between sentinel and helper macrophages permits neutrophil migration into infected uroepithelium. Cell 156:456–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shah-Simpson S, Lentini G, Dumoulin PC, Burleigh BA (2017) Modulation of host central carbon metabolism and in situ glucose uptake by intracellular Trypanosoma cruzi amastigotes. PLoS Pathog, 13 e1006747

    Google Scholar 

  90. Sherwood RK, Roy CR (2016) Autophagy Evasion and Endoplasmic Reticulum Subversion: The Yin and Yang of Legionella Intracellular Infection. Annu Rev Microbiol 70:413–433

    Article  CAS  PubMed  Google Scholar 

  91. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, Chi H (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shih CJ, Wu YL, Chao PW, Kuo SC, Yang CY, Li SY, Ou SM, Chen YT (2015) Association between Use of Oral Anti-Diabetic Drugs and the Risk of Sepsis: A Nested Case-Control Study. Sci Rep 5:15260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM, Friedman RL (2020) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog, 6 e1001230

    Google Scholar 

  94. Skokos D, Botros HG, Demeure C, Morin J, Peronet R, Birkenmeier G, Boudaly S, Mecheri S (2003) Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J Immunol 170:3037–3045

    Article  CAS  PubMed  Google Scholar 

  95. Song J, Duncan MJ, Li G, Chan C, Grady R, Stapleton A, Abraham SN (2007) A novel TLR4-mediated signaling pathway leading to IL-6 responses in human bladder epithelial cells. PLoS Pathog, 3 e60

    Google Scholar 

  96. Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, Adams YF, Mikulski Z, Khorram N, Rosenthal P, Broide DH, Croft M (2013) Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med 210:775–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Starr T, Child R, Wehrly TD, Hansen B, Hwang S, Lopez-Otin C, Virgin HW, Celli J (2012) Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11:33–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, Viollet B, Guigas B (2011) Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia 54:3101–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M, Howell GJ, Clark H, Madsen J, Evans CM, Sutherland TE, Ivens AC, Thornton DJ, Grencis RK, Hussell T, Cunoosamy DM, Cook PC, Macdonald AS (2019) The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol 20:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tannahill GM, Curtis AM, Adamik J, Palsson-Mcdermott EM, McGettrick AF, Goel G, Frezza C, Bernard NJ, Kelly B, Foley NH, Zheng L, Gardet A, Tong Z, Jany SS, Corr SC, Haneklaus M, Caffrey BE, Pierce K, Walmsley S, Beasley FC, Cummins E, Nizet V, Whyte M, Taylor CT, Lin H, Masters SL, Gottlieb E, Kelly VP, Clish C, Auron PE, Xavier RJ, O’Neill LA (2013) Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature 496:238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Thapa B, Lee K (2019) Metabolic influence on macrophage polarization and pathogenesis. BMB Rep 52:360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Traven A. Naderer T (2019) Central metabolic interactions of immune cells and microbes: prospects for defeating infections. EMBO Rep, 20, e47995.

    Google Scholar 

  103. Tsuji M, Komatsu N, Kawamoto S, Suzuki K, Kanagawa O, Honjo T, Hori S, Fagarasan S (2009) Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science 323:1488–1492

    Article  CAS  PubMed  Google Scholar 

  104. Tucey TM, Verma J, Harrison PF, Snelgrove SL, Lo TL, Scherer AK, Barugahare AA, Powell DR, Wheeler RT, Hickey MJ, Beilharz TH (2018) Glucose Homeostasis Is Important for Immune Cell Viability during Candida Challenge and Host Survival of Systemic Fungal Infection. Cell Metab, 27, 988–1006 e7

    Google Scholar 

  105. Valle-Casuso JC, Angin M, Volant S, Passaes C, Monceaux V, Mikhailova A, Bourdic K, Avettand-Fenoel V, Boufassa F, Sitbon M, Lambotte O (2019) Cellular Metabolism Is a Major Determinant of HIV-1 Reservoir Seeding in CD4(+) T Cells and Offers an Opportunity to Tackle Infection. Cell Metab, 29, 611–626 e5

    Google Scholar 

  106. von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529:221–225

    Article  CAS  Google Scholar 

  107. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J, Green DR (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35:871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wu S, Shen Y, Zhang S, Xiao Y, Shi S (2020) Salmonella Interacts With Autophagy to Offense or Defense. Front Microbiol 11:721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wu XR, Kong XP, Pellicer A, Kreibich G, Sun TT (2009) Uroplakins in urothelial biology, function, and disease. Kidney Int 75:1153–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Yu X, Buttgereit A, Lelios I, Utz SG, Cansever D, Becher B, Greter M (2017) The Cytokine TGF-beta Promotes the Development and Homeostasis of Alveolar Macrophages. Immunity, 47, 903–912 e4

    Google Scholar 

  111. Zarrouk M, Finlay DK, Foretz M, Viollet B, Cantrell DA (2014) Adenosine-mono-phosphate-activated protein kinase-independent effects of metformin in T cells. PLoS One, 9, e106710

    Google Scholar 

  112. Zhang X, Zhao S, Sun L, Li W, Wei Q, Ashman RB, Hu Y (2017) Different virulence of candida albicans is attributed to the ability of escape from neutrophil extracellular traps by secretion of DNase. Am J Transl Res 9:50–62

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Morais da Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Salles, É.M., Pizzolante, B.C., da Fonseca, D.M. (2022). Metabolic Reprogramming and Infectious Diseases. In: Camara, N.O.S., Alves-Filho, J.C., Moraes-Vieira, P.M.M.d., Andrade-Oliveira, V. (eds) Essential Aspects of Immunometabolism in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-86684-6_8

Download citation

Publish with us

Policies and ethics