Skip to main content

Patagonian Marine Forests in a Scenario of Global and Local Stressors

  • Chapter
  • First Online:
Book cover Global Change in Atlantic Coastal Patagonian Ecosystems

Abstract

Humankind, by a particular set of social systems driving the exploitation of nature, has been taking ravaging actions causing enough biogeophysical damage to the planet so that a new geological era has been discussed. Among all environmental threats, climate change has the potential to alter the planet in ecological and evolutionary ways through different aspects, such as ocean warming and acidification. Besides these global aspects, local stressors such as overfishing and pollution contribute to a greater threat to the world’s biodiversity. The Patagonian coast is a unique environment in the South Atlantic with populations of macroalgae forming underwater forests. Unfortunately, Patagonia is experiencing, besides climatic changes, the impacts of local stressors. In this chapter we demonstrate how global aspects interact with invasive species and changes in the continental runoff that locally or regionally threat important ecosystems in the Argentinean coast. The current and the future distribution of kelp species – the native Macrocystis pyrifera and the invasive Undaria pinnatifida – are predicted under different emission scenarios. Considering the available information, current trends, and future scenarios, we advocate in this chapter for further efforts to improve coastal management and resilience of Patagonia marine forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguayo R, León-Muñoz J, Vargas-Baecheler J, Montecinos A, Garreaud R, Urbina M, Soto D, Iriarte JL (2019) The glass half-empty: climate change drives lower freshwater input in the coastal system of the Chilean Northern Patagonia. Clim Change 155:417–435

    Article  Google Scholar 

  • Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Altvater E, Crist EC, Haraway DJ, Hartley D, Parenti C, McBrien J (2016) Anthropocene or Capitalocene?: nature, history, and the crisis of capitalism. Pm Press, Oakland, 240 p

    Google Scholar 

  • Anderson MJ (2005) Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland, vol. 26, pp 32–46

    Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrão EA, De Clerck O (2018) Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Article  Google Scholar 

  • Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Met Ecol Evol 3:327–338

    Article  Google Scholar 

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Clim Change. https://doi.org/10.1002/wcc.316

  • Bartsch I, Wiencke C, Bischof K, Buchholz CM, Buck BH, Eggert A, Feuerpfeil P, Hanelt D, Jacobsen S, Karez R, Karsten U, Molis M, Roleda MY, Schubert H, Schumann R, Valentin K, Weinberger F, Wiese J (2008) The genus Laminaria sensu lato: recent insights and developments. Eur J Phycol 43:1–86

    Article  Google Scholar 

  • Bianchi AA, Bianucci L, Piola AR, Pino DR, Schloss I, Poisson A, Balestrini CF (2005) Vertical stratification and air-sea CO2 fluxes in the Patagonian shelf. J Geophys Res Oceans 110:1–10

    Article  Google Scholar 

  • Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S (2013) Climate change and the past, present, and future of biotic interactions. Science 341:499–504

    Article  CAS  PubMed  Google Scholar 

  • Bollen M, Pilditch CA, Battershill CN, Bischof K (2016) Salinity and temperature tolerance of the invasive alga Undaria pinnatifida and native New Zealand kelps: implications for competition. Mar Biol 163:1–14

    Article  CAS  Google Scholar 

  • Borja A, White MP, Berdalet E, Bock N, Eatock C, Kristensen P, Fleming LE (2020) Moving toward an agenda on ocean health and human health in Europe. Front Mar Sci 7:37

    Article  Google Scholar 

  • Bovcon ND, Cochia PD, Góngora ME, Gosztonyi AE (2011) New records of warm-temperate water fishes in central Patagonian coastal waters (Southwestern South Atlantic Ocean). J Appl Ichthyol 27:832–839

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biol Lett 4:585–589

    Article  PubMed  PubMed Central  Google Scholar 

  • Bunicontro MP, Marcomini SC, Casas GN (2019) Environmental impacts of an alien kelp species (Undaria pinnatifida, Laminariales) along the Patagonian coasts. In: Makowski C, Finkl CW (eds) Impacts of invasive species on coastal environments. Springer, pp 373–396

    Chapter  Google Scholar 

  • Casas G, Scrosati R, Piriz ML (2004) The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biol Invasions 6:411–416

    Article  Google Scholar 

  • Chatterjee S, Hadi AS (2006) Regression analysis by example. Wiley, 695 p

    Google Scholar 

  • Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90

    Article  Google Scholar 

  • Coll J, Oliveira EC (1999) The benthic marine algae of Uruguay. Bot Mar 42:129–135

    Article  Google Scholar 

  • Croce ME, Parodi ER (2012) Seasonal dynamic of macroalgae in intertidal pools formed by beds of Crassostrea gigas (Mollusca, Bivalvia) on the north Patagonian Atlantic coast. Bot Mar 55:49–58

    Article  Google Scholar 

  • Diaz P, Gappa JL, Piriz ML (2002) Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot Mar 45:267–273

    Article  Google Scholar 

  • Díaz S, Settele J, Brondizio ES, Ngo HT, Agard J, Arneth A, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Ichii K, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura DO, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin Y-J, Visseren-Hamakers I, Willis K, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:1–10

    Article  Google Scholar 

  • Dieck IT (1993) Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales, Phaeophyta) – ecological and biogeographical implications. Mar Ecol Prog Ser 100:253–264

    Article  Google Scholar 

  • Early R, Bradley BA, Dukes JS, Lawler JJ, Olden JD, Blumenthal DM, Gonzalez P, Grosholz ED, Ibañez I, Miller LP, Sorte CJB, Tatem AJ (2016) Global threats from invasive alien species in the twenty-first century and national response capacities. Nat Commun 7:1–9

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Ferrier S, Huettmann F, Leathwick J (2005) The evaluation strip: a new and robust method for plotting predicted responses from species distribution models. Ecol Model 186:280–289

    Article  Google Scholar 

  • Ellis EC, Beusen AHW, Goldewijk KK (2020) Anthropogenic biomes: 10,000 BCE to 2015 CE. Land 9:8–10

    Article  Google Scholar 

  • Escapa CM, Isacch JP, Daleo P, Alberti J, Iribarne O, Borges M, dos Santos EP, Gagliardini DA, Lasta M (2004) The distribution and ecological effects of the introduced Pacific oyster Crassostrea gigas (Thunberg, 1793) in Northern Patagonia. J Shellfish Res 23:765–772

    Google Scholar 

  • Fernández PA, Roleda MY, Hurd CL (2015) Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth Res 124:293–304

    Article  PubMed  Google Scholar 

  • Fernández PA, Navarro JM, Camus C, Torres R, Bushmann AH (2021) Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach. Sci Rep 11:1–15

    Article  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Figuerola B, Hancock AM, Bax N, Cummings VJ, Downey R, Griffiths HJ, Smith J, Stark JS (2021) A review and meta-analysis of potential impacts of ocean acidification on marine calcifiers from the Southern ocean. Front Mar Sci 8:584445

    Article  Google Scholar 

  • Fontela M, Velo A, Gilcoto M, Pérez FF (2021) Anthropogenic CO2 and ocean acidification in Argentine Basin Water Masses over almost five decades of observations. Sci Total Environ 779:1–9

    Article  Google Scholar 

  • Franco BC, Combes V, González Carman V (2020) Subsurface ocean warming hotspots and potential impacts on marine species: the southwest South Atlantic Ocean case study. Front Mar Sci 7:1–13

    Article  Google Scholar 

  • Friedlander AM, Ballesteros E, Bell TW, Caselle JE, Campagna C, Goodell W, Hune M, Muñoz A, Salinas-de-León P, Sala E, Dayton PK (2020) Kelp forests at the end of the Earth: 45 years later. Plos One 15:1–23

    Article  Google Scholar 

  • Gaiero DM, Probst JL, Depetris PJ, Bidart SM, Leleyter L (2003) Iron and other transition metals in Patagonian riverborne and windborne materials: geochemical control and transport to the southern South Atlantic Ocean. Geochim Cosmochim Acta 67:3603–3623

    Article  CAS  Google Scholar 

  • Gao X, Endo H, Taniguchi K, Agatsuma Y (2013) Combined effects of seawater temperature and nutrient condition on growth and survival of juvenile sporophytes of the kelp Undaria pinnatifida (Laminariales; Phaeophyta) cultivated in northern Honshu, Japan. J Appl Phycol 25:269–275

    Article  Google Scholar 

  • Garaffo GV, Llanos EN, Bottero MS, Hines E, Elías R, Jaubet ML (2020) Functional diversity on rocky shores of the SW Atlantic: sewage effluents influence and mask the effects of the latitudinal gradient. Mar Ecol Progr Ser 648:39–49

    Article  Google Scholar 

  • Gaylord B, Denny M (1997) Flow and flexibility. I. Effects of size, shape and stiffness in determining wave forces on the stipitate kelps Eisenia arborea and Pterygophora californica. J Exp Biol 200:3141–3164

    Article  PubMed  Google Scholar 

  • Gil MN, Giarratano E, Barros V, Bortolus A, Codignotto JO, Delfino Schenke R, Gongora ME, Lovrich G, Monti AJ, Pascual M, Rivas AL, Tagliorette A (2019) Southern Argentina: the Patagonian Continental Shelf. In: Sheppard C (ed) World seas: an environmental evaluation. Volume I: Europe, The Americas and West Africa. Academic Press, pp 783–812

    Google Scholar 

  • Global Biodiversity Information Facility GBIF.org (2021a) GBIF occurrence download. https://doi.org/10.15468/dl.gywfr4

  • Global Biodiversity Information Facility GBIF.org (2021b) GBIF occurrence download. https://doi.org/10.15468/dl.3u7qqd

  • Gorman D, Bajjouk T, Populus J, Vasquez M, Ehrhold A (2013) Modeling kelp forest distribution and biomass along temperate rocky coastlines. Mar Biol 160:309–325

    Article  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2017) Habitat suitability and distribution models. Cambridge University Press, Cambridge, 462 p

    Google Scholar 

  • Hamilton SK (2010) Biogeochemical implications of climate change for tropical rivers and floodplains. Hydrobiologia 657:19–35

    Article  CAS  Google Scholar 

  • Hartmann DL (2016) Global physical climatology, 2nd edn. Elsevier, 498 p

    Google Scholar 

  • He Q, Silliman BR (2019) Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr Biol 29:R1021–R1035

    Article  CAS  PubMed  Google Scholar 

  • Hollarsmith JA, Buschmann AH, Camus C, Grosholz ED (2020) Varying reproductive success under ocean warming and acidification across giant kelp (Macrocystis pyrifera) populations. J Exp Mar Biol Ecol 522:151247

    Article  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • Inagaki KY, Pennino MG, Floeter SR, Hay ME, Longo GO (2020) Trophic interactions will expand geographically but be less intense as oceans warm. Glob Change Biol 26:6805–6812

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and II to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, 151 pp

    Google Scholar 

  • IPCC (2019) Special report: The ocean and Cryosphere in a changing climate. https://www.ipcc.ch/srocc/

  • Irigoyen AJ, Eyras C, Parma AM (2011a) Alien algae Undaria pinnatifida causes habitat loss for rocky reef fishes in north Patagonia. Biol Invasions 13:17–24

    Article  Google Scholar 

  • Irigoyen AJ, Trobbiani G, Sgarlatta MP, Raffo P (2011b) Effects of the alien algae Undaria pinnatifida (Phaeophyceae, Laminariales) on the diversity and abundance of benthic macrofauna in Golfo Nuevo (Patagonia, Argentina): potential implications for local food webs. Biol Invasions 13:1521–1532

    Article  Google Scholar 

  • Johnson GC, Doney SC (2006) Recent western South Atlantic bottom water warming. Geophys Res Lett 33:1–5

    Google Scholar 

  • Johnson GC, Lyman JM (2020) Warming trends increasingly dominate global ocean. Nat Clim Change 10:757–761

    Article  Google Scholar 

  • Karez R, Engelbert S, Kraufvelin P, Pedersen MF, Sommer U (2004) Biomass response and changes in composition of ephemeral macroalgal assemblages along an experimental gradient of nutrient enrichment. Aquat Bot 78:103–117

    Article  Google Scholar 

  • Kc S, Lutz W (2017) The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob Environ Change 42:181–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerswell AP (2006) Global biodiversity patterns of benthic marine algae. Ecology 87:2479–2488

    Article  PubMed  Google Scholar 

  • Kindlmann P, Schödelbauerová I, Dixon AF (2007) Inverse latitudinal gradients in species diversity. In: Storch D, Marquet PA, Brown JH (eds) Scaling biodiversity. Cambridge University Press, Cambridge, pp 246–257

    Chapter  Google Scholar 

  • Landrigan P, Stegeman J, Fleming L, Allemand D, Anderson D, Backer L, Rampal P (2020) Human health and ocean pollution. Ann Glob Health 86:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Layton C, Coleman MA, Marzinelli EM, Steinberg PD, Swearer SE, Vergés A, Wenberg T, Johnson CR (2020) Kelp forest restoration in Australia. Front Mar Sci 7:1–12

    Article  Google Scholar 

  • Leal PP, Hurd CL, Fernández PA, Roleda MY (2017a) Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: independent effects are more important than their interaction. Mar Biol 164:1–13

    Article  CAS  Google Scholar 

  • Leal PP, Hurd CL, Fernández PA, Roleda MY (2017b) Ocean acidification and kelp development: reduced pH has no negative effects on meiospore germination and gametophyte development of Macrocystis pyrifera and Undaria pinnatifida. J Phycol 53:557–566

    Article  CAS  PubMed  Google Scholar 

  • Leal PP, Hurd CL, Sander SG, Armstrong E, Fernández PA, Suhrhoff TJ, Roleda MY (2018) Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci Rep 8:1–13

    Article  CAS  Google Scholar 

  • Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  • Lewis SL, Maslin AM (2015) Defining the Anthropocene. Nature 519:171–180

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W (2012) Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Ind 18:42–49

    Article  Google Scholar 

  • Liuzzi MG, Gappa JL, Piriz ML (2011) Latitudinal gradients in macroalgal biodiversity in the Southwest Atlantic between 36 and 55 S. Hydrobiologia 673:205–214

    Article  Google Scholar 

  • Macaya EC, Boltaña S, Hinojosa IA, Macchiavello JE, Valdivia NA, Vásquez NR, Buschmann AH, Vásquez JA, Vega JMA, Thiel M (2005) Presence of sporophylls in floating kelp rafts of Macrocystis spp. (Phaeophyceae) along the Chilean Pacific coast. J Phycol 41:913–922

    Article  Google Scholar 

  • Malhi Y (2017) The concept of the Anthropocene. Annu Rev Environ Res 42:77–104

    Article  Google Scholar 

  • Mann KH (1972) Ecological energetics of the seaweed zone in a marine bay on the Atlantic coast of Canada: I. Zonation and biomass of seaweeds. Mar Biol 12:1–10

    Article  Google Scholar 

  • Marcovecchio JE, Gerpe MS, Bastida RO, Rodríguez DH, Morón SG (1994) Environmental contamination and marine mammals in coastal waters from Argentina: an overview. Sci Total Environ 154:141–151

    Article  CAS  PubMed  Google Scholar 

  • Martinetto P, Daleo P, Escapa M, Alberti J, Isacch JP, Fanjul E, Bott F, Piriz ML, Ponce G, Casas G, Iribarne O (2010) High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Est Coast Shelf Sci 88:357–364

    Article  CAS  Google Scholar 

  • Meinen CS, Perez RC, Dong S, Piola AR, Campos E (2020) Observed ocean bottom temperature variability at four sites in the Northwestern Argentine basin: evidence of decadal deep/abyssal warming amidst hourly to interannual variability during 2009–2019. Geophys Res Lett 47:e2020GL089093

    Article  Google Scholar 

  • Meneses I, Santelices B (2000) Patterns and breaking points in the distribution of benthic algae along the temperate Pacific coast of South America. Rev Chil Hist Nat 73:615–623

    Article  Google Scholar 

  • Menezes M, Bicudo CE, Moura CW, Alves AM, Santos AA, Pedrini ADG, Araújo A, Tucci A, Fajar A, Malone C, Kano CH, Sant’Anna CL, Branco CZ, Odebrecht C, Peres CK, Neuhaus EB, Eskinazi-Leça E, Aquino E, Nauer F, Santos GN, Amado Filho GM, Lyra GM, Borges GCP, Costa IO, Nogueira IS, Oliveira IB, de Paula JC, Nunes JMC, Lima JC, Santos KRS, Ferreira LC, Gestinari LMS, Cardoso LS, Figueiredo MAO, Silva MH, Barreto MBBB, Henriques MCO, Cunha MGGS, Bandeira-Pedrosa ME, Oliveira-Carvalho MF, Széchy MTM, Azevedo MTP, de Oliveira MC, Cabezudo MM, Santiago MF, Bergesh M, Fujii MT, Bueno NC, Necchi O Jr, Jesus PB, Bahia RG, Khader S, Alves-da-Silva SM, Guimarães SMPB, Pereira SMB, Caires TA, Meurer T, Cassano V, Werner VR, da Gama Jr WA, Silva WJD (2015) Update of the Brazilian floristic list of Algae and Cyanobacteria. Rodriguesia 66:1047–1062

    Article  Google Scholar 

  • Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492

    Article  Google Scholar 

  • Moreno CA, Jara HF (1984) Ecological studies on fish fauna associated with Macrocystis pyrifera belts in the south of Fuegian Islands, Chile. Mar Ecol Prog Ser 15:99–107

    Article  Google Scholar 

  • Naimi B, Hamm NAS, Groen TA, Skidmore AK, Toxopeus AG (2014) Where is positional uncertainty a problem for species distribution modelling? Ecography 37:191–203

    Article  Google Scholar 

  • Narvarte MA, Avaca MS, de la Barra P, Góngora ME, Jaureguizar AJ, Ocampo Reinaldo M, Romero MA, Storero LP, Svendsen GM, Tapella F, Zaidman P, González R. (this volume) The Patagonian fisheries over time: facts and lessons to be learned to face global change. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer. Cham

    Google Scholar 

  • Oliveira MC, Pellizzari F, Medeiros AS, Yokoya NS (2020) Diversity of Antarctic seaweeds. In: Huovinen P, Gómez I (eds) Antarctic seaweeds. Springer, pp 23–42

    Chapter  Google Scholar 

  • Orensanz JM, Schwindt E, Pastorino G, Bortolus A, Casas G, Darrigran G, Elías R, López Gappa JJ, Obenat S, Pascual M, Penchaszadeh P, Piriz ML, Scarabino F, Spivak ED, Vallarino EA (2002) No longer the pristine confines of the world ocean: a survey of exotic marine species in the southwestern Atlantic. Biol Invasions 4:115–143

    Article  Google Scholar 

  • Paruelo JM, Beltrán A, Jobbágy E, Sala OE, Golluscio RA (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Aust 8:85–101

    Google Scholar 

  • Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006) Model-based uncertainty in species range prediction. J Biogeogr 33:1704–1711

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen I, Clark TD, Colwell RK, Danielsen F, Evengard B, Falconi L, Ferrier S, Frusher F, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lennoir J, Linnetved HI, Martin VY, McComarck PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Sheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wenberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:eaai9214

    Article  PubMed  Google Scholar 

  • Pereyra PJ, Narvarte MA, Tatian M, González RAC (2015) The simultaneous introduction of the tunicate Styela clava (Herdman, 1881) and the macroalga Undaria pinnatifida (Harvey) Suringar, 1873, in northern Patagonia. Bioinvasions Rec 4:179–184

    Article  Google Scholar 

  • Pereyra PJ, de la Barra P, Gastaldi M, Saad JF, Firstater FN, Narvarte MA (2017) When the tiny help the mighty: facilitation between two introduced species, a solitary ascidian and a Macroalga in northern Patagonia, Argentina. Mar Biol 164:185

    Article  Google Scholar 

  • Pessacg N, Blázquez J, Lancelotti J, Solman S. (this volume) Climate changes in coastal areas of Patagonia: observed trends and future projections. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2012) Ecological niches and geographic distributions. Princeton University Press, Princeton, 328 p

    Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Piriz M, Eyras M, Rostagno C (2003) Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. J Appl Phycol 15:67–74

    Article  Google Scholar 

  • Racine P, Marley A, Froehlich HE, Gaines SD, Ladner I, MacAdam-Somer I, Bradley D (2021) A case for seaweed aquaculture inclusion in US nutrient pollution management. Mar Pol 129:104506

    Google Scholar 

  • Raffo MP, Eyras MC, Iribarne OO (2009) The invasion of Undaria pinnatifida to a Macrocystis pyrifera kelp in Patagonia (Argentina, south-west Atlantic). Mar Biol Assoc UK 89:1571

    Article  Google Scholar 

  • Raffo MP, Russo VL, Schwindt E (2014) Introduced and native species on rocky shore macroalgal assemblages: zonation patterns, composition and diversity. Aquat Bot 112:57–65

    Article  Google Scholar 

  • Ramírez ME (2010) Flora marina bentónica de la región austral de Sudamérica y la Antártica. An Inst Patag Univ Magallanes 38:57–71

    Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Climate 17:4099–4107

    Article  Google Scholar 

  • Sala JE. (this volume) Conservation of coastal Atlantic environments in Northern Patagonia: a critical review. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Salomon AK, Shears NT, Langlois TJ, Babcock RC (2008) Cascading effects of fishing can alter carbon flow through a temperate coastal system. Ecol Appl 18:1874–1887

    Article  PubMed  Google Scholar 

  • Santelices B (1980) Phytogeographic characterization of the temperate coast of Pacific South America. Phycologia 19:1–12

    Article  Google Scholar 

  • Santelices B, Marquet P (1998) Seaweeds, latitudinal diversity patterns, and Rapoport’s rule. Divers Distrib 4:71–75

    Article  Google Scholar 

  • Santelices B, Meneses I (2000) A reassessment of the phytogeographic characterization of temperate Pacific South America. Rev Chil Hist Nat 73:605–614

    Article  Google Scholar 

  • Saraceno M, Martín J, Moreira D, Pisoni JP, Tonini MH. (this volume) Physical changes in the Patagonian shelf. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Schwindt E, Gappa JL, Raffo MP, Tatián M, Bortolus A, Orensanz JM, Alonso G, Diez ME, Doti B, Genzano G, Lagger C, Lovrich G, Piriz ML, Mendez MM, Savoya V, Sueiro MC (2014) Marine fouling invasions in ports of Patagonia (Argentina) with implications for legislation and monitoring programs. Mar Environ Res 99:60–68

    Article  CAS  PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sjøtun K, Fredriksen S, Rueness J (1998) Effect of canopy biomass and wave exposure on growth in Laminaria hyperborea (Laminariaceae: Phaeophyta). Eur J Phycol 33:337–343

    Article  Google Scholar 

  • Smale DA, Wernberg T, Oliver E, Thomsen M, Harvey BP, Straub SC, Burrows MT, Alexander LV, Benthuysen JA, Donat MG, Feng M, Hobday AJ, Holbrook NJ, Perkins-Kirkpatrick SE, Scannell HA, Gupta AS, Payne BL, Moore PJ (2019) Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat Clim Change 9:306–312

    Article  Google Scholar 

  • Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson M, Halpern BS, Jorge MA, Lombana A, Lourie SA (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Biosciences 57:573–583

    Article  Google Scholar 

  • Steffen W, Sanderson A, Tyson PD, Jager J, Matson PA, Moore III B, Oldfield F, Richardson K, Schellnhuber HJ, Turner II BL, Wasson RJ (2004) Global change and the Earth system, a planet under pressure. Springer, 336 p

    Google Scholar 

  • Steinacher M, Joos F, Frölicher TL, Plattner GK, Doney SC (2009) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533

    Article  CAS  Google Scholar 

  • Stuart D, Gunderson R (2020) Human-animal relations in the capitalocene: environmental impacts and alternatives. Environ Soc 6:68–81

    Article  Google Scholar 

  • Thuiller W, Georges D, Engler R, Breiner F (2019) Biomod2: Ensemble platform for species distribution modeling. R Package Version 3:3–7.1

    Google Scholar 

  • Torossian JL, Kordas RL, Helmuth B (2016) Cross-scale approaches to forecasting biogeographic responses to climate change. Adv Ecol Res 55:371–433

    Article  Google Scholar 

  • Torres AI, Gil MN, Esteves JL (2004) Nutrient uptake rates by the alien alga Undaria pinnatifida (Phaeophyta) (Nuevo Gulf, Patagonia, Argentina) when exposed to diluted sewage effluent. Hydrobiologia 520:1–6

    Article  CAS  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Article  Google Scholar 

  • Valentine JP, Johnson CR (2003) Establishment of the introduced kelp Undaria pinnatifida in Tasmania depends on disturbance to native algal assemblages. J Exp Mar Biol Ecol 265:63–90

    Article  Google Scholar 

  • Valentine JP, Johnson CR (2004) Establishment of the introduced kelp Undaria pinnatifida following dieback of the native macroalga Phyllospora comosa in Tasmania, Australia. Mar Freshw Res 55:1–8

    Article  Google Scholar 

  • Valiñas MS, Blum R, Galván D, Varisco M, Matinetto P. (this volume) Global change effects on biological interactions: nutrient inputs, invasive species, and multiple drivers shape marine Patagonian communities. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • van der Loos LM, Schmid M, Leal PP, McGraw CM, Britton D, Revill AT, Virtue P, Nichols PD, Hurd CL (2019) Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol Evol 9:125–140

    Article  PubMed  Google Scholar 

  • van der Struijk LF, Kroeze C (2010) Future trends in nutrient export to the coastal waters of South America: implications for occurrence of eutrophication. Global Biog Cy 24:1–14

    Google Scholar 

  • Vanella FA, Fernández DA, Romero MC, Calvo J (2007) Changes in the fish fauna associated with a sub-Antarctic Macrocystis pyrifera kelp forest in response to canopy removal. Polar Biol 30:449–457

    Article  Google Scholar 

  • Vergés A, Steinberg PD, Hay MK, Poore AGB, Campbell AH, Ballesteros E, Heck KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumbai PJ, Nakamura Y, Roughan M, van Sebille E, Gupta AS, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc Royal Soc B Biol Sci 281:1–10

    Google Scholar 

  • Villafañe VE, Cabrerizo MJ, Carrillo P, Hernando MP, Medina-Sánchez JM, Narvarte MA, Saad JF, Valiñas MS, Helbling EW. (this volume) Global change effects on plankton from Atlantic Patagonian coastal waters: the role of interacting drivers. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Watanabe Y, Nishihara GN, Tokunaga S, Terada R (2014) The effect of irradiance and temperature responses and the phenology of a native alga, Undaria pinnatifida (Laminariales), at the southern limit of its natural distribution in Japan. J Appl Phycol 26:2405–2415

    Article  CAS  Google Scholar 

  • Wernberg T, Filbee-Dexter K (2019) Missing the marine forest for the trees. Mar Ecol Prog Ser 612:209–215

    Article  Google Scholar 

  • Wernberg T, Thomsen MS (2005) The effect of wave exposure on the morphology of Ecklonia radiata. Aquat Bot 83:61–70

    Article  Google Scholar 

  • Wiens JA, Stralberg D, Jongsomjit D, Howell CA, Snyder MA (2009) Niches, models, and climate change: assessing the assumptions and uncertainties. Proc Natl Acad Sci 106(Suppl 2):19729–19736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson KL, Tittensor DP, Worm B, Lotze HK (2020) Incorporating climate change adaptation into marine protected area planning. Glob Change Biol 26:3251–3267

    Article  Google Scholar 

  • Worm B, Lotze HK (2021) Marine biodiversity and climate change. In: Letcher TM (ed) Climate change, 3rd edn. Elsevier, pp 445–464

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Horta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Horta, P., Koerich, G., Grimaldi, G., Mueller, C.M., Destri, G., de Macêdo Carneiro, P.B. (2022). Patagonian Marine Forests in a Scenario of Global and Local Stressors. In: Helbling, E.W., Narvarte, M.A., González, R.A., Villafañe, V.E. (eds) Global Change in Atlantic Coastal Patagonian Ecosystems. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-86676-1_7

Download citation

Publish with us

Policies and ethics