Skip to main content

Physical Changes in the Patagonian Shelf

  • 157 Accesses

Part of the Natural and Social Sciences of Patagonia book series (NSSP)

Abstract

The Patagonian shelf is one of the most productive and dynamic continental shelves of the world. Changes in the environmental conditions affect productivity, species population sizes, and community structure within the coastal ocean ecosystem. In this chapter, the baseline knowledge of the physical processes and the observed and expected changes that affect the Patagonian shelf and in particular the coastal area are reviewed. Sea surface temperature (SST) data show a significant positive trend north of ~50°S and negative trend values south of 50°S. The negative SST trend observed is associated with the positive trend observed in the dominant westerly winds within those latitudes. Chlorophyll a shows a linear trend during spring as large as 2 mg m−3 over a 10-year period in the southern portion of the continental shelf. The linear trend in sea surface height (SSH) ranges between 2 and 5 mm yr−1. In the northern region, the SSH trend is associated with local changes in the density field caused by advective effects in response to a southward displacement of the South Atlantic High. The Southern Annular Mode (SAM) is one of the main drivers that might explain a portion of the interannual variability observed in the Patagonian shelf.

Keywords

  • Patagonian shelf
  • Circulation
  • Water masses
  • Temperature

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-86676-1_3
  • Chapter length: 29 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-86676-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105

    Google Scholar 

  • Amoroso RO, Gagliardini DA (2010) Inferring complex hydrographic processes using remote-sensed images: turbulent fluxes in the Patagonian gulfs and implications for scallop metapopulation dynamics. J Coast Res 26:320–332

    Google Scholar 

  • Andreo VC, Dogliotti AI, Tauro CB (2016) Remote sensing of phytoplankton blooms in the continental shelf and shelf-break of Argentina: spatio-temporal changes and phenology. IEEE J Sel Top Appl Earth Obs Remote Sens 9:5315–5324

    Google Scholar 

  • Barros VR, Doyle ME, Camilloni IA (2008) Precipitation trends in southeastern South America: relationship with ENSO phases and with low-level circulation. Theor Appl Climatol 93:19–33

    Google Scholar 

  • Beron-Vera FJ, Bodnariuk N, Saraceno M, Olascoaga MJ, Simionato C (2020) Stability of the Malvinas current. Chaos 30:13152

    CAS  Google Scholar 

  • Balestrini C, Manzella G, Lovrich GA, (1998) Simulación de corrientes en el Canal Beagle y Bahía Ushuaia, mediante un modelo bidimensional. Servicio de Hidrografía Naval 98:1–58

    Google Scholar 

  • BDHI (2020) Base de Datos Hidrológica Integrada, Secretaría de Infraestructura y Política Hídrica de la Nación. http://bdhi.hidricosargentina.gob.ar/. Accessed 19 June 2020

  • Bilbao RAF, Gregory JM, Bouttes N (2015) Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs. Clim Dyn 45:2647–2666

    Google Scholar 

  • Bindoff NL, Stott PA, Achuta Rao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X, (2013) Detection and Attribution of Climate Change: from Global to Regional. In: Stocker TF et al. (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 867–952. https://doi.org/10.1017/CBO9781107415324.022

  • Blázquez J, Nestor Nuñez M, Kusunoki S (2012) Climate projections and uncertainties over South America from MRI/JMA Global Model Experiments. Atmos Clim Sci 02:381–400

    Google Scholar 

  • Bodnariuk N, Simionato CG, Osman M, Saraceno M (2021a) The Río de la Plata plume dynamics over the southwestern Atlantic continental shelf and its link with the large scale atmospheric variability on interannual timescales. Cont Shelf Res 212(2):104296. https://doi.org/10.1016/j.csr.2020.104296

  • Bodnariuk N, Simionato CG, Saraceno M (2021b) SAM-driven variability of the southwestern Atlantic shelf sea circulation. Cont Shelf Res 212:104313. https://doi.org/10.1016/j.csr.2020.104296

  • Boyer TP, Antonov JI, Baranova OK, Coleman C, Garcia HE, Grodsky A, Johnson DR, Locarnini RA, Mishonov AV, O’Brien TD, Paver CR, Reagan JR, Seidov D, Smolyar IV, Zweng MM (2013) World Ocean Database. Sydney Levitus (Ed), Alexey Mishonov (Technical Ed), NOAA Atlas NESDIS 72, 209 pp. https://doi.org/10.7289/V5NZ85MT

  • Brandhorst W, Castello JP, Perez Habiaga R, Roa BH (1971) Argentina: Evaluación de los recursos de anchoita (Engraulis anchoita) frente a la Argentina y Uruguay. 4. Abundancia relativa entre las latitudes 34grad.30 y 44grad.10 en relación a las condiciones ambientales en Ago-Sep 1970. FAO

    Google Scholar 

  • Brun AA, Ramirez N, Pizarro O, Piola AR (2020) The role of the Magellan strait on the southwest South Atlantic shelf. Estuar Coast Shelf Sci 237:106661

    Google Scholar 

  • Bown F, Rivera A, Peȩtlicki M, Bravo C, Oberreuter J, Moffat C (2019) Recent ice dynamics and mass balance of Jorge Montt Glacier, Southern Patagonia Icefield. J Glaciol, 65:253:732–744

    Google Scholar 

  • Carbajal JC, Luján Rivas A, Chavanne C (2018) High-frequency frontal displacements south of 6 Jorge gulf during a tidal cycle near spring and neap phases: biological implications between tidal states. Oceanography 31:60–69

    Google Scholar 

  • Carranza MM, Gille ST, Piola AR, Charo M, Romero SI (2017) Wind modulation of upwelling at the shelf-break front off Patagonia: observational evidence. J Geophys Res Ocean 122:2401–2421

    Google Scholar 

  • Carson M, Köhl A, Stammer DA, Slangen AB, Katsman CA, van de Wal RSW, Church J, White N (2016) Coastal sea level changes, observed and projected during the 20th and 21st century. Clim Chang 134:269–281

    Google Scholar 

  • COIRCO (2020) Comité Interjurisdiccional del Río Colorado. https://www.coirco.gov.ar/. Accessed 19 Jun 2020.

  • Combes V, Matano RP (2018) The Patagonian shelf circulation: drivers and variability. Prog Oceanogr 167:24–43

    Google Scholar 

  • Cosentino NJ, Ruiz-Etcheverry LA, Bia GL, Simonella LE, Coppo R, Torre G, Saraceno M, Tur VM, Gaiero DM (2020) Does satellite chlorophyll-a respond to southernmost Patagonian dust? A multi-year, event-based approach. J Geophys Res Biogeosci. https://doi.org/10.1029/2020JG006073

  • Crespo EA (this volume) Long-term population trends of Patagonian marine mammals and their ecosystem interactions in the context of climate change. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Cucchi-Colleoni D, Carreto JI, (2001) Variación estacional de la biomasa fitoplanctónica en el Golfo San Jorge. Resultados de las campañas de investigación OB-01/00. OB-03/00, OB-07/00, OB-10/00 y OB-12/00. Inf Téc Int DNI-INIDEP, 49:30.

    Google Scholar 

  • Cucco A, Martín J, Quattrocchi G, Fernández D, (2019) Water Circulation in the Beagle Channel, a modeling study. Geophys Res Abs, Vol. 21, EGU2019-2617.

    Google Scholar 

  • D’Onofrio EE, Oreiro FA, Grismeyer WH, Fiore MME (2016) Accurate astronomical tide predictions calculated from satellite altimetry and coastal observations for the area of Isla Grande de Tierra del Fuego, Isla de los Estados and Beagle channel. Geoacta (Argentina) 40:60–75

    Google Scholar 

  • Echevarría ER, Dragani WC, Wörner S (2019) A comprehensive study about alongshore wave energy flux in the coast of Buenos Aires, Argentina. J Coast Conserv 23:435–443

    Google Scholar 

  • Egbert GD, Bennett AF, Foreman MGG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res. https://doi.org/10.1029/94jc01894

  • Elliott M, Day JW, Ramachandran R, Wolanski E (2019) Chapter 1 – A Synthesis: What Is the Future for Coasts, Estuaries, Deltas and Other Transitional Habitats in 2050 and Beyond? In: Wolanski E et al (eds) Coasts and Estuaries. Elsevier, pp 1–28. ISBN: 9780128140031.

    Google Scholar 

  • Elisio M, Maenza RA, Luz Clara M, Baldoni AG (2020) Modeling the bottom temperature variation patterns on a coastal marine ecosystem of the southwestern Atlantic Ocean (El Rincón), with special emphasis on thermal changes affecting fish populations. J Mar Syst 212:103445

    Google Scholar 

  • Esteves JL, Solis M, Cejas J, Vera R, (1986) Golfo San José: Resultados de las campañas oceanográficas 1984/1985. Report. Chubut, Argentina: Chubut Province Administration, 13p.

    Google Scholar 

  • Esteves JL, Rivas A, Pisoni JP, Ocariz H, Troisi A (2012) Uso de las boyas SVP para el análisis de la circulación superficial en el golfo San Jorge y zona de influencia. VIII Jornadas Nacionales de Ciencias del Mar 2012, Comodoro Rivadavia, Argentina.

    Google Scholar 

  • Flores-Melo X, Schloss I, Chavanne C, Almandoz G, Latorre M, Ferreyra G (2018) Phytoplankton ecology during a spring-neap tidal cycle in the southern tidal front of San Jorge gulf, Patagonia. Oceanography 31:70–80

    Google Scholar 

  • Framiñan MB, Balestrini CF, Bianchi A, Demilio G, Piola AR (1991) Datos CTD y series temporales de velocidad, temperatura y conductividad en el golfo San Matías. Servicio de Hidrografía Naval, Informe Técnico N° 63/1991, Argentina.

    Google Scholar 

  • Franco BC, Palma ED, Combes V, Acha EM, Saraceno M (2018) Modeling the offshore export of Subantarctic shelf waters from the Patagonian shelf. J Geophys Res Ocean 123. https://doi.org/10.1029/2018JC013824

  • Fierro J (2008) Tides in the austral Chilean channels and fjords. Avances en el conocimiento oceanográfico de las aguas interiores chilenas, Puerto Montt a cabo de Hornos. Silva N, Palma S, (eds). Comité Oceanográfico Nacional, Pontificia Universidad Católica de 669 Valparaíso, Valparaíso, pp. 63–66.

    Google Scholar 

  • Gagliardini DA, Rivas AL (2004) Environmental characteristics of San Matías gulf obtained from LANDSAT-TM and ETM+ data. Gayana 68:186–193

    Google Scholar 

  • Gagliardini DA, (2011) Medium Resolution Microwave, Thermal and Optical Satellite Sensors: Characterizing Coastal Environments Through the Observation of Dynamical Processes. In Remote Sensing of the Changing Oceans pp. 251–277. Springer, Berlin, Heidelberg.

    Google Scholar 

  • Galván DE, Bovcon ND, Cochia PD, González RA, Lattuca ME, Ocampo Reinaldo M, Rincón-Díaz MP, Romero MA, Vanella FA, Venerus LA, Svendsen GM (this volume) Changes in the specific and biogeographic composition of coastal fish assemblages in Patagonia, driven by climate change, fishing, and invasion by alien species. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Garreaud R, Lopez P, Minvielle M, Rojas M (2013) Large-scale control on the Patagonian climate. J Clim 26:215–230

    Google Scholar 

  • GEBCO Compilation Group (2020) GEBCO 2020 Grid, https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9

  • Gil MN, Torres AI, Amin O, Esteves JL (2011) Assessment of recent sediment influence in an urban polluted subantarctic coastal ecosystem. Beagle channel (southern Argentina). Mar Pollut Bull 62:201–207

    CAS  PubMed  Google Scholar 

  • Gill AE (1982) Atmosphere – ocean dynamics. Academic Press, New York, 662 pag

    Google Scholar 

  • Glembocki NG, Williams GN, Góngora ME, Gagliardini DA, Orensanz JM (2015) Synoptic oceanography of San Jorge gulf (Argentina): a template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. J Sea Res 95:22–35

    Google Scholar 

  • Glorioso PD (1987) Temperature distribution related to shelf-sea fronts on the Patagonian shelf. Cont Shelf Res 7:27–34

    Google Scholar 

  • Glorioso PD, Flather RA (1995) A barotropic model of the currents off SE South America. J Geophys Res 100:13427

    Google Scholar 

  • Guerrero RA, Acha EM, Framiñan MB, Lasta CA (1997) Physical oceanography of the Río de la Plata Estuary, Argentina. Cont Shelf Res 17:727–742

    Google Scholar 

  • Guerrero RA, (1998) Oceanografía física del estuario de Río de la Plata y el sistema costero de El Rincón. In: Lasta C (Ed) Resultados de una campaña de evaluación de recursos demersales costeros de la Provincia de Buenos Aires y del litoral uruguayo. Noviembre, 1994. INIDEP, Mar del Plata, Argentina. INIDEP Inf Tec 21:29-54

    Google Scholar 

  • Guihou K, Piola AR, Palma ED, Chidichimo MP (2020) Dynamical connections between large marine ecosystems of austral South America based on numerical simulations. Ocean Sci 16:271–290

    Google Scholar 

  • Hallett CS, Hobday AJ, Tweedley JR, Thompson PA, McMahon K, Valesini FJ (2018) Observed and predicted impacts of climate change on the estuaries of South-Western Australia, a Mediterranean climate region. Reg Environ Chang 18:1357–1373

    Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contributions of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pachauri RK, Meyer LA (eds). IPCC, Geneva, Switzerland, 151 pp.

    Google Scholar 

  • Isla FI, Isla MF (this volume) Geological changes in coastal areas of Patagonia, Argentina and Chile. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Isla F, Bujalesky G, Coronato A (1999) Procesos estuarinos en el canal Beagle, Tierra del Fuego. Rev Asoc Geol Argentina 54:307–318

    Google Scholar 

  • Jaureguizar AJ, Wiff R, Luz Clara M (2016) Role of the preferred habitat availability for small shark (Mustelus schmitti) on the interannual variation of abundance in a large Southwest Atlantic coastal system (El Rincón, 39°–41°S). Aquat Living Resour 29:305

    Google Scholar 

  • Johnson MS, Meskhidze N, Kiliyanpilakkil VP, Gassó S (2011) Understanding the transport of Patagonian dust and its influence on marine biological activity in the South Atlantic Ocean. Atmos Chem Phys 11:2487–2502

    CAS  Google Scholar 

  • Kopp RE, Horton RM, Little CM, Mitrovica JX, Oppenheimer M, Rasmussen DJ, Strauss BH, Tebaldi C (2014) Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Future 2:383–406

    Google Scholar 

  • Krock B, Borel CM, Barrera F, Tillmann U, Fabro E, Almandoz GO, Ferrario M, Garzón Cardona JE, Koch BP, Alonso C, Lara R (2015) Analysis of the hydrographic conditions and cyst beds in the San Jorge gulf, Argentina, that favor dinoflagellate population development including toxigenic species and their toxins. J Mar Syst 148:86–100

    Google Scholar 

  • Labraga JC (1994) Extreme winds in the Pampa del Castillo Plateau, Patagonia, Argentina, with reference to wind farm settlement. J Appl Meteorol 33:85–95

    Google Scholar 

  • Lago LS, Saraceno M, Ruiz-Etcheverry LA, Passaro M, Oreiro FA, Donofrio EE, Gonzalez RA (2017) Improved sea surface height from satellite altimetry in coastal zones: a case study in southern Patagonia. IEEE J Sel Top Appl Earth Obs Remote Sens. https://doi.org/10.1109/JSTARS.2017.2694325

  • Lago LS, Saraceno M, Martos P, Guerrero RA, Piola AR, Paniagua GF, Ferrari R, Artana CI, Provost C (2019) On the wind contribution to the variability of ocean currents over wide continental shelves: a case study on the northern Argentine continental shelf. J Geophys Res Ocean. https://doi.org/10.1029/2019JC015105

  • Lago LS, Saraceno M, Piola AR, Ruiz-Etcheverry LA (2021) Volume transport variability on the northern Argentine continental shelf from in situ and satellite altimetry data. J Geophys Res Ocean. https://doi.org/10.1029/2020JC016813

  • Lanfredi NW, Pousa JL, D’Onofrio EE (1998) Sea-level rise and related potential hazards on the Argentine coast. J Coast Res 14:47–60

    Google Scholar 

  • Leyba IM, Solman SA, Saraceno M (2019) Trends in sea surface temperature and air–sea heat fluxes over the South Atlantic Ocean. Clim Dyn. https://doi.org/10.1007/s00382-019-04777-2

  • Lucas AJ, Guerrero RA, Mianzán HW, Acha EM, Lasta CA (2005) Coastal oceanographic regimes of the Northern Argentine Continental shelf (34-43°S). Estuar Coast Shelf Sci 65:405–420

    Google Scholar 

  • Marrari M, Piola AR, Valla D, Wilding JG (2016) Trends and variability in extended ocean color time series in the main reproductive area of the Argentine hake, Merluccius hubbsi (southwestern Atlantic Ocean). Remote Sens Environ 177:1–12

    Google Scholar 

  • Marrari M, Piola AR, Valla D (2017) Variability and 20-year trends in satellite-derived surface chlorophyll concentrations in large marine ecosystems around South and Western Central America. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00372

  • Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143

    Google Scholar 

  • Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures. J Clim 19:5388–5404

    Google Scholar 

  • Martin J, Colloca C, Diodato S, Malits A, Kreps G (2016) Variabilidad espacio-temporal de las concentraciones de oxígeno disuelto en Bahía Ushuaia y Canal Beagle (Tierra del Fuego). Nat Patagonica 8:193

    Google Scholar 

  • Matano RP, Palma ED (2008) On the upwelling of downwelling currents. J Phys Oceanogr 38:2482–2500

    Google Scholar 

  • Matano R, Palma E (2018) Seasonal variability of the oceanic circulation in the gulf of San Jorge, Argentina. Oceanography. https://doi.org/10.5670/oceanog.2018.402

  • Matano RP, Palma ED, Piola AR (2010) The influence of the Brazil and Malvinas currents on the southwestern Atlantic shelf circulation. Ocean Sci 6:983–995

    Google Scholar 

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Google Scholar 

  • Melo XF, Martín J, Kerdel L, Bourrin F, Colloca CB, Menniti C, de Madron XD (2020) Particle dynamics in Ushuaia Bay (Tierra del Fuego)-potential effect on dissolved oxygen depletion. Water (Switzerland). https://doi.org/10.3390/w12020324

  • Moreira D, Simionato CG, Dragani WC, Nuñez MN (2009) Tidal and residual currents observations at the San Matías and San José gulfs, northern Patagonia. Argentina J Coast Res 254:957–968

    Google Scholar 

  • Moreira D, Simionato CG, Dragani W (2011) Modeling ocean tides and their energetics in the North Patagonia gulfs of Argentina. J Coast Res. https://doi.org/10.2112/JCOASTRES-D-09-00055.1

  • Narvarte MA, Avaca MS, de la Barra P, Góngora ME, Jaureguízar AJ, Ocampo Reinaldo M, Romero MA, Storero LP, Svendsen GM, Tapella F, Zaidman P, González RA (this volume) The Patagonian fisheries over time: facts and lessons to be learned to face global change. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Oppenheimer M, Glavovic BC, Hinkel J (2019) Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: Pörtner HO et al (eds) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate.

    Google Scholar 

  • Palma ED (2002) Tides and tidal energy in Valdés Península (Argentina). Revista geofísica 56:31.

    Google Scholar 

  • Palma ED, Matano RP (2012) A numerical study of the Magellan Plume. J Geophys Res Ocean. https://doi.org/10.1029/2011JC007750

  • Palma ED, Matano RP, Piola AR (2004) A numerical study of the southwestern Atlantic shelf circulation: barotropic response to tidal and wind forcing. J Geophys Res C Ocean 109:C8. https://doi.org/10.1029/2004JC002315

    CrossRef  Google Scholar 

  • Palma ED, Matano RP, Piola AR (2008) A numerical study of the southwestern Atlantic shelf circulation: stratified ocean response to local and offshore forcing. J Geophys Res Ocean. https://doi.org/10.1029/2007JC004720

  • Palma ED, Matano RP, Tonini MH, Martos P, Combes V (2020) Dynamical analysis of the oceanic circulation in the Gulf of San Jorge, Argentina. J Mar Syst, 203. https://doi.org/10.1016/j.jmarsys.2019.103261

  • Panella S, Michelato A, Perdicaro R, Magazzu G, Decembrini F, Scarazzato P (1991) A preliminary contribution to understanding the hydrological characteristics of the strait of Magellan: austral spring 1989. Boll Oceanol Teor Appl 9:107–126

    Google Scholar 

  • Paparazzo FE, Crespi-Abril AC, Gonçalves RJ, Barbieri ES, Gracia Villalobos LL, Solís ME, Soria G (2018) Patagonian dust as a source of macronutrients in the Southwest Atlantic Ocean. Oceanography 31:33–39

    Google Scholar 

  • Penland C, Sun D-Z, Capotondi A, Vimont DJ (2013) A brief introduction to El Niño and La Niña. Clim Dyn Why Does Clim Vary. https://doi.org/10.1029/2008GM000846

  • Pérez I, Alonso G, Pescio A, Dragani W, Codignotto J (2017) Longshore wave energy flux: variability and trends in the southern coast of Buenos Aires, Argentina. Reg Stud Mar Sci 16:116–123

    Google Scholar 

  • Perrette M, Landerer F, Riva R, Frieler K, Meinshausen M (2013) A scaling approach to project regional sea level rise and its uncertainties. Earth Syst Dynam 4:11–29

    Google Scholar 

  • Pessacg N, Blázquez J, Lancelotti J, Solman S (this volume) Climate changes in coastal areas of Patagonia: observed trends and future projections. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Piola AP, Scasso LM (1988) Circulación en el golfo San Matías. Geoacta 15:33–51

    Google Scholar 

  • Piola AR, Matano RP, Palma ED, Möller OO, Campos EJD (2005) The influence of the Plata river discharge on the western South Atlantic shelf. Geophys Res Lett 32:1–4

    Google Scholar 

  • Piola AR, Martínez Avellaneda N, Guerrero RA, Jardón FP, Palma ED, Romero SI (2010) Malvinas-slope water intrusions on the northern Patagonia continental shelf. Ocean Sci. https://doi.org/10.5194/os-6-345-2010

  • Piola AR, Palma ED, Bianchi AA, Castro BM, Dottori M, Guerrero RA, Marrari M, Matano RP, Möller OO, Saraceno M (2018) Physical oceanography of the SW Atlantic shelf: a review. In: Hoffmeyer MS, Sabatini ME, Brandini FP, Calliari DL, Santinelli NH (eds) Plankton ecology of the southwestern Atlantic: from the subtropical to the Subantarctic realm. Springer, Cham, pp 37–56

    Google Scholar 

  • Pisoni JP (2012) Los sistemas frontales y la circulación en las inmediaciones de los Golfos Norpatagónicos. Doctoral Thesis, Universidad de Buenos Aires, 197 pp.

    Google Scholar 

  • Pisoni JP, Rivas AL, Piola AR (2014) Satellite remote sensing reveals coastal upwelling events in the San Matías Gulf-Northern Patagonia. Remote Sens Environ 152:270–278

    Google Scholar 

  • Pisoni JP, Rivas AL, Piola AR (2015) On the variability of tidal fronts on a macrotidal continental shelf, northern Patagonia, Argentina. Deep Sea Res Part II Top Stud Oceanogr 119:61–68

    Google Scholar 

  • Pisoni JP, Rivas AL, Tonini MH (2020) Coastal upwelling in the San Jorge gulf (southwestern Atlantic) from remote sensing, modelling and hydrographic data. Estuar Coast Shelf Sci 245:106919

    Google Scholar 

  • Poli L, Artana C, Provost C, Sirven J, Sennéchael N, Cuypers Y, Lellouche J-M (2020) Anatomy of subinertial waves along the Patagonian shelf break in a 1/12° global operational model. J Geophys Res Ocean. https://doi.org/10.1029/2020JC016549

  • Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. Dev Quat Sci. https://doi.org/10.1016/S1571-0866(07)10008-7

  • Rabassa J, Clapperton CM (1990) Quaternary glaciations of the southern Andes. Quat Sci Rev 9:153–174

    Google Scholar 

  • Reiter ML, Luz Clara Tejedor M, Moreira D (2019) Distribución de temperatura y salinidad en la región de El Rincón a partir de observaciones in situ durante el período 1978–2018. XVIII Congreso Latinoamericano de Ciencias del Mar, 4 y 8 de noviembre de 2019, Mar del Plata, Argentina

    Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Google Scholar 

  • Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker TF et al. (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 255–316. https://doi.org/10.1017/CBO9781107415324.010

  • Rivas A (1990) Heat balance and annual variation of mean temperature in the North-Patagonian gulfs. Oceanol Acta 13:265–272

    Google Scholar 

  • Rivas AL (1997) Current-meter observations in the Argentine continental shelf. Cont Shelf Res 17:391–406

    Google Scholar 

  • Rivas AL, Beier EJ (1990) Temperature and salinity fields in the northpatagonic gulfs. Ocean Acta 13:15–20

    Google Scholar 

  • Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean continental shelf. J Mar Syst 79:134–143

    Google Scholar 

  • Rodrigues KA, Jaureguizar AJ, Guerrero RA (2013) Environmental factors that define the spawning and nursery areas for Percophis brasiliensis (Teleostei: Percophididae) in a multispecific reproductive coastal zone, El Rincón (39°–41°S), Argentina. Hydrobiologia 709:1–10

    CAS  Google Scholar 

  • Romero SI, Piola AR, Charo M, Eiras Garcia CA (2006) Chlorophyll – a variability off Patagonia based on SeaWiFS data. J Geophys Res Ocean. https://doi.org/10.1029/2005JC003244

  • Ruiz Etcheverry LA, Saraceno M, Piola AR, Valladeau G, Möller OO (2015) A comparison of the annual cycle of sea level in coastal areas from gridded satellite altimetry and tide gauges. Cont Shelf Res 92:87–97

    Google Scholar 

  • Ruiz Etcheverry LA, Saraceno M, Piola AR, Strub PT (2016) Sea level anomaly on the Patagonian continental shelf: trends, annual patterns and geostrophic flows. J Geophys Res Ocean. https://doi.org/10.1002/2015JC011265

  • Ruiz-Etcheverry LA, Saraceno M (2020) Sea level trend and fronts in the South Atlantic Ocean. Geoscience. https://doi.org/10.3390/geosciences10060218

  • Sabatini M, Martos P (2002) Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Sci Mar 66:215–232

    Google Scholar 

  • Sabatini ME, Reta R, Lutz VA, Segura V, Daponte C (2016) Influence of oceanographic features on the spatial and seasonal patterns of mesozooplankton in the southern Patagonian shelf (Argentina, SW Atlantic). J Mar Syst 157:20–38

    Google Scholar 

  • Santamaria-Aguilar S, Schuerch M, Vafeidis AT, Carretero SC (2017) Long-term trends and variability of water levels and tides in Buenos Aires and Mar del Plata, Argentina. Front Mar Sci 4:380

    Google Scholar 

  • Saraceno M, Provost C, Piola AR, Bava J, Gagliardini A (2004) Brazil Malvinas Frontal System as seen from 9 years of advanced very high resolution radiometer data. J Geophys Res C Ocean 109. https://doi.org/10.1029/2003JC002127

  • Saraceno M, Provost C, Piola AR (2005) On the relationship between satellite-retrieved surface temperature fronts and chlorophyll a in the western South Atlantic. J Geophys Res Ocean 110:1–16

    Google Scholar 

  • Saraceno M, D’Onofrio EE, Fiore ME, Grismeyer WH (2010) Tide model comparison over the southwestern Atlantic shelf. Cont Shelf Res 30:1865–1875

    Google Scholar 

  • Saraceno M, Simionato CG, Ruiz-Etcheverry LA (2014) Sea surface height trend and variability at seasonal and interannual time scales in the southeastern South American continental shelf between 27°S and 40°S. Cont Shelf Res 91:82–94

    Google Scholar 

  • Saraceno M, Tonini MH, Williams GN, Aubone N, Olascoaga MJ, Beron-Vera FJ, Gonzalez R, Soria M, Saad JF, Svendsen G (2020) On the complementary information provided by satellite images, Lagrangian drifters, and a regional numerical model: a case study in the San Matías Gulf, Argentina. Remote Sens Earth Syst Sci. https://doi.org/10.1007/s41976-020-00039-6

  • Scasso LM, Piola AP (1988) Intercambio neto de agua entre el mar y la atmósfera en el golfo San Matías. Geoacta 15:13–31

    Google Scholar 

  • Schloss I, Ferreyra G, Ferrario M, Almandoz G, Codina R, Bianchi A, Balestrini C, Ochoa H, Ruiz Pino D, Poisson A (2007) Role of plankton communities in sea-air variations in pCO2 in the SW Atlantic Ocean. Mar Ecol Prog Ser 332:93–106

    CAS  Google Scholar 

  • Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404

    Google Scholar 

  • SHN (2018) Tablas de Marea. Servicio de Hidrografía Naval. Ministerio de Defensa, Argentina.

    Google Scholar 

  • Sievers AH, Silva N, (2008) Water masses and circulation in austral Chilean channels and fjords. In: Silva N, Palma S, (eds), Progress in the Oceanographic Knowledge of Chilean Inner Waters, from Puerto Montt to Cape Horn. Comité Oceanográfico Nacional – Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, pp. 53–58

    Google Scholar 

  • Slangen ABA, Carson M, Katsman CA, van de Wal RSW, Köhl A, Vermeersen LLA, Stammer D (2014) Projecting twenty-first century regional sea-level changes. Clim Chang 124:317–332

    CAS  Google Scholar 

  • St-Onge G, Ferreyra G (2018) Introduction to the special issue on the gulf of San Jorge (Patagonia, Argentina). Oceanography 31:14–15

    Google Scholar 

  • Strelin J, Iturraspe R (2007) Recent evolution and mass balance of Cordón Martial glaciers, cordillera Fueguina Oriental. Glob Planet Change 59:17–26

    Google Scholar 

  • Strub PT, James C, Combes V, Matano RP, Piola AR, Palma ED, Saraceno M, Guerrero RA, Fenco H, Ruiz-Etcheverry LA (2015) Altimeter-derived seasonal circulation on the Southwest Atlantic shelf: 27°-43°S. J Geophys Res Ocean 120:3391–3418

    Google Scholar 

  • Strub PT, James C, Montecino V, Rutllant JA, Blanco JL (2019) Ocean circulation along the southern Chile transition region (38°–46°S): mean, seasonal and interannual variability, with a focus on 2014–2016. Prog Oceanogr 172:159–198

    PubMed  PubMed Central  Google Scholar 

  • Sylwan C (2001) Geología de la cuenca del golfo San Jorge, Argentina. J Iber Geol 27:123–157

    Google Scholar 

  • Temperoni B, Massa AE, Derisio C, Martos P, Berghoff C, Viñas MD (2018) Effect of nursery ground variability on condition of age 0+ year Merluccius hubbsi. J Fish Biol 93:1090–1101

    PubMed  Google Scholar 

  • Thompson PR, Mitchum GT (2014) Coherent sea level variability on the North Atlantic western boundary. J Geophys Res Ocean 119:5676–5689

    Google Scholar 

  • Thompson DWJ, Solomon S, Kushner PJ, England MH, Grise KM, Karoly DJ (2011) Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nat Geosci 4:741–749

    CAS  Google Scholar 

  • Tonini MH, Palma ED (2017) Tidal dynamics on the North Patagonian Argentinean gulfs. Estuar Coast Shelf Sci 189:115–130. https://doi.org/10.1016/j.ecss.2017.02.026

  • Tonini MH, Palma ED, Rivas AL (2006) Modelo de alta resolución de los golfos Patagónicos. Mecánica Comput 25:1441–1460

    Google Scholar 

  • Tonini MH, Palma ED, Piola AR (2013) A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Cont Shelf Res 65:97–110

    Google Scholar 

  • Torres A, Paparazzo F, Williams G, Rivas A, Solis M, Esteves J (2018) Dynamics of macronutrients in the San Jorge gulf during spring and summer. Oceanography 31:25–32

    Google Scholar 

  • Villafañe VE, Cabrerizo MJ, Carrillo P, Hernando MP, Medina-Sánchez JM, Narvarte MA, Saad JF, Valiñas MS, Helbling EW (this volume) Global change effects on plankton from Atlantic Patagonian coastal waters: role of interacting drivers. In: Helbling EW, Narvarte MA, González RA, Villafañe VE (eds) Global change in Atlantic coastal Patagonian ecosystems. A journey through time. Springer, Cham

    Google Scholar 

  • Wörner S, Dragani WC, Echevarria ER, Carrasco M, Barón PJ (2019) An estimation of the possible migration path of the Pacific oyster (Crassostrea gigas) along the northern coast of Patagonia. Estuar Coasts 42:806–821

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Saraceno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Saraceno, M., Martín, J., Moreira, D., Pisoni, J.P., Tonini, M.H. (2022). Physical Changes in the Patagonian Shelf. In: Helbling, E.W., Narvarte, M.A., González, R.A., Villafañe, V.E. (eds) Global Change in Atlantic Coastal Patagonian Ecosystems. Natural and Social Sciences of Patagonia. Springer, Cham. https://doi.org/10.1007/978-3-030-86676-1_3

Download citation